Answer:
4.66
Explanation:
A=P(1+
n
r
)
nt
Compound interest formula
A=94000\hspace{35px}P=59000\hspace{35px}t=10\hspace{35px}n=365
A=94000P=59000t=10n=365
Given values
94000=
94000=
\,\,59000\left(1+\frac{r}{365}\right)^{365(10)}
59000(1+
365
r
)
365(10)
Plug in values
94000=
94000=
\,\,59000\left(1+\frac{r}{365}\right)^{3650}
59000(1+
365
r
)
3650
Multiply
\frac{94000}{59000}=
59000
94000
=
\,\,\frac{59000\left(1+\frac{r}{365}\right)^{3650}}{59000}
59000
59000(1+
365
r
)
3650
Divide by 59000
1.593220339=
1.593220339=
\,\,\left(1+\frac{r}{365}\right)^{3650}
(1+
365
r
)
3650
\left(1.593220339\right)^{1/3650}=
(1.593220339)
1/3650
=
\,\,\left[\left(1+\frac{r}{365}\right)^{3650}\right]^{1/3650}
[(1+
365
r
)
3650
]
1/3650
Raise both sides to 1/3650 power
1.000127613=
1.000127613=
\,\,1+\frac{r}{365}
1+
365
r
-1\phantom{=}
−1=
\,\,-1
−1
Subtract 1
0.000127613=
0.000127613=
\,\,\frac{r}{365}
365
r
365\left(0.0001276\right)=
365(0.0001276)=
\,\,\left(\frac{r}{365}\right)365
(
365
r
)365
Multiply by 365
0.046578745=
0.046578745=
\,\,r
r
4.6578745\%=
4.6578745%=
\,\,r
r
Convert to percent (multiply by 100)
r\approx
r≈
\,\,4.66\%
4.66%