58.4k views
4 votes
In the circle below, suppose m VUX = 152° and mZUVW = 77º. Find the following.

(a) m ZVUX =
(b) m ZUXW =

In the circle below, suppose m VUX = 152° and mZUVW = 77º. Find the following. (a-example-1
User Rany
by
4.4k points

1 Answer

2 votes

Given:

In the circle,
m(\overarc{VUX})=152^\circ and
m(\angle MUV)=77^\circ.

To find:

The following measures:

(a)
m\angle VUX

(b)
m\angle UXW

Solution:

According to the central angle theorem, the central angle is always twice of the subtended angle intercepted on the same same arc.


m(VUX)=2* m\angle VWX


152^\circ=2* m\angle VWX


(152^\circ)/(2)=m\angle VWX


76^\circ=m\angle VWX

In a cyclic quadrilateral, the opposite angles are supplementary angles.

UVWX is a cyclic quadrilateral. So,


m\angle VUX+m\angle VWX=180^\circ [Opposite angles of a cyclic quadrilateral]


m\angle VUX+76^\circ=180^\circ


m\angle VUX=180^\circ-76^\circ


m\angle VUX=104^\circ

Now,


m\angle UXW+m\angle UVW=180^\circ [Opposite angles of a cyclic quadrilateral]


m\angle UXW+77^\circ =180^\circ


m\angle UXW=180^\circ-77^\circ


m\angle UXW=103^\circ

Therefore,
m\angle VUX=104^\circ and
m\angle UXW=103^\circ .

User Reconquistador
by
3.7k points