Answer:
3.840 atm
Step-by-step explanation:
We use Boyle's law, which relates the pressure (P) and the volume (V) of a gas at a constant temperature. The change from initial P and V (P₁ and V₁) to final P and V (P₂ and V₂) is expressed as:
P₁V₁ = P₂V₂
We have the following data:
P₁= 0.960 atm
V₁= 200.0 mL
V₂ = 50.0 mL
Thus, we introduce the data in the equation and calculate the final pressure P₂:
P₂ = P₁V₁/V₂= (0.960 atm x 200.0 mL)/50.0 mL = 3.840 atm
Therefore, a pressure of 3.840 atm is needed to reduce the volume of the gas from 200.0 mL to 50.0 mL.