Answer:
hello your question has some missing information attached below is the missing information
answer : mean ratio of estimate = 117.62
standard error ( SE ) = 3.9765
Explanation:
Given data : n = 20, μx = 10.3 , N = 1132
∑ age ( yi) = ( 125 + 119 + --------- + 99 ) = 2148
∑ ( Y - rX)^2 = 6116.728
mean of age ( y ) = ∑ y / 20 = 2148 / 20 = 107.4
mean of diameter ( x ) = ∑x /20 = 188.1 / 20 = 9.405
∴ ratio estimate = y /x = 107.4 / 9.41 = 11.4195
i) The mean of ratio estimate
= 11.4195 * μx = 11.4195 * 10.3 = 117.6204
ii) determine the standard error ( SE )
calculate ;
= 1 / ( n-1 ) * ∑ (Y - rX)^2 = 1/19 ( 6116.728 ) = 321.933
Var ( μr ) = [ ( N - n ) / N*n ]*
= [ ( 1132 - 20 ) / (1132*20) ] * 321.933
= 15.81226
therefore the SE = √15.81226 ≈ 3.9765