Answer:
See Below.
Explanation:
We want to prove the trigonometric identity:
![\displaystyle (\sec^2(\theta)-1)/(\sin(\theta))=(\sin(\theta))/(1-\sin^2(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/w86w6k3s2mltp8gnl4on49qqx3ttfaynw4.png)
To start, let's simplify the right side. Recall the Pythagorean Identity:
![\sin^2(\theta)+\cos^2(\theta)=1](https://img.qammunity.org/2022/formulas/mathematics/college/ehkhy9ry6kqyakhvnc67pfsew82ve2q5xt.png)
Therefore:
![\cos^2(\theta)=1-\sin^2(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/2zfzq8ggle7mbqqvdeyrax99szhgk1nln1.png)
Substitute:
![\displaystyle (\sin(\theta))/(1-\sin^2(\theta))=(\sin(\theta))/(\cos^2(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/lhj6pgo7ysyv8ubpvgfn7kdx3uhyuw1ql9.png)
Split:
![\displaystyle =(\sin(\theta))/(\cos(\theta))\left((1)/(\cos(\theta))\right)=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/6iwehpxh7xr983tcnhuplofrgkz4ghlvyz.png)
Therefore, our equation becomes:
![\displaystyle (\sec^2(\theta)-1)/(\sin(\theta))=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/sxo2xsl29bxr7aqe6xgyfa0xvwuuq2o7xj.png)
From the Pythagorean Identity, we can divide both sides by cos²(θ). This yields:
![\displaystyle \tan^2(\theta)+1=\sec^2(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/z1ccspsry5e0w7pe26g3okhduj7hgpkjf4.png)
So:
![\tan^2(\theta)=\sec^2(\theta)-1](https://img.qammunity.org/2022/formulas/mathematics/college/yb5yuigtvbppy4ldcdbh7vlk53t2r3zi0j.png)
Substitute:
![\displaystyle (\tan^2(\theta))/(\sin(\theta))=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/y04t9m5k6o4uidi1p3h313spqqc3w73dii.png)
Rewrite:
![\displaystyle (\tan(\theta))^2\left((1)/(\sin(\theta))\right)=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/gcpkj8mt39apue9002kfdcg7wdintqv57z.png)
Recall that tan(θ) = sin(θ)/cos(θ). So:
![\displaystyle (\sin^2(\theta))/(\cos^2(\theta))\left((1)/(\sin(\theta))\right)=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/wvnitukqmksj7dk3f863ptrkbaf7zvp1lz.png)
Simplify:
![\displaystyle (\sin(\theta))/(\cos^2(\theta))=\tan(\theta)\sec(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/wuxb4obv0zq9swb8c1ly36x3ess2t25iwn.png)
Simplify:
![\tan(\theta)\sec(\theta)=\tan(\theta)\sec(\theta)}](https://img.qammunity.org/2022/formulas/mathematics/college/hvw4b9puz3jipd9flxnc4qm02dhzf03efz.png)
Hence proven.