146k views
4 votes
Write the square roots of 49 i in ascending order of the angle.

Write the square roots of 49 i in ascending order of the angle.-example-1

1 Answer

2 votes

Answer:

The square roots of 49·i in ascending order are;

1) -7·(cos(45°) + i·sin(45°))

2) 7·(cos(45°) + i·sin(45°))

Explanation:

The square root of complex numbers 49·i is found as follows;

x + y·i = r·(cosθ + i·sinθ)

Where;

r = √(x² + y²)

θ = arctan(y/x)

Therefore;

49·i = 0 + 49·i

Therefore, we have;

r = √(0² + 49²) = 49

θ = arctan(49/0) → 90°

Therefore, we have;

49·i = 49·(cos(90°) + i·sin(90°)

By De Moivre's formula, we have;


r \cdot (cos(\theta) + i \cdot sin(\theta) )^{(1)/(2)} = \pm √(r) \cdot \left (cos\left ((\theta)/(2) \right ) + i \cdot sin\left ((\theta)/(2) \right ) \right )

Therefore;

√(49·i) = √(49·(cos(90°) + i·sin(90°)) = ± √49·(cos(90°/2) + i·sin(90°/2))

∴ √(49·i) = ± √49·(cos(90°/2) + i·sin(90°/2)) = ± 7·(cos(45°) + i·sin(45°))

√(49·i) = ± 7·(cos(45°) + i·sin(45°))

The square roots of 49·i in ascending order are;

√(49·i) = - 7·(cos(45°) + i·sin(45°)) and 7·(cos(45°) + i·sin(45°))

User Badp
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories