Answer:
(a) PT = 13 cm
(b) <PTR =
![39.7^(o)](https://img.qammunity.org/2022/formulas/mathematics/college/bschnq2fm0hby55j2kh1vku2zslz1zn0fy.png)
Explanation:
(a) Applying the Pythagoras theorem to QST, we have;
=
+
![QT^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/fnwc8gl9xzc1q8c268tp5rzzkm92qy8t9c.png)
=
+
![8^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eg72vvadfd2vcuxu41ig7afw2o8nuy3joh.png)
= 36 + 64
100
QS =
![√(100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hx9nfzbfmumyn7ti4zgqzoce1okdlocmfv.png)
= 10
QS = 10 cm
Since QS = TR, then;
WT =
TR
=
x 10
WT = 5 cm
Thus, applying Pathagoras theorem to PWT;
=
+
![WT^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/o3dabrcg3r9lfw6zngjyx39jtmsjxde5s3.png)
=
+
![5^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ezkob3j060bhq3892bbszchoxkl9rm3ivv.png)
= 144 + 25
= 169
PT =
![√(169)](https://img.qammunity.org/2022/formulas/mathematics/high-school/m94x4lh0uzeags1xrbgqxwyzlfnlbxyhje.png)
= 13
PT = 13 cm
(b) To determine <PTR, TR = 10 cm. Apply the required trigonometric function;
Cos θ =
![(adjacent)/(hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ler4i8h44p63uj8683grselxl9pdbwfuio.png)
Cos θ =
![(10)/(13)](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4dxtsuoz61vu20crnw8mjs8u3lff1i7pd.png)
= 0.7692
θ =
0.7692
= 39.7179
θ =
![39.7^(o)](https://img.qammunity.org/2022/formulas/mathematics/college/bschnq2fm0hby55j2kh1vku2zslz1zn0fy.png)
Therefore, <PTR =
![39.7^(o)](https://img.qammunity.org/2022/formulas/mathematics/college/bschnq2fm0hby55j2kh1vku2zslz1zn0fy.png)