Answer:
The major and minor stresses are as 2060.59 psf, -310.59 psf and 1185.59 psf.
Step-by-step explanation:
The major and minor principal stresses are given as follows:
![\sigma_(max)=(\sigma_x+\sigma_y)/(2)+\sqrt{\left((\sigma_x-\sigma_y)/(2)\right)^2+\tau_(xy)^2}](https://img.qammunity.org/2022/formulas/engineering/college/xwcawyx0rwm72d791fyiizqolex8tmwvgo.png)
![\sigma_(min)=(\sigma_x+\sigma_y)/(2)-\sqrt{\left((\sigma_x-\sigma_y)/(2)\right)^2+\tau_(xy)^2}](https://img.qammunity.org/2022/formulas/engineering/college/xlyuzvx2067ef35ksrownsj57yf13lnjqq.png)
Here
is the normal stress which is 1750 psf
is 0
is the shear stress which is 800 psf
So the formula becomes
![\sigma_(max)=(\sigma_x+\sigma_y)/(2)+\sqrt{\left((\sigma_x-\sigma_y)/(2)\right)^2+\tau_(xy)^2}\\\sigma_(max)=(1750+0)/(2)+\sqrt{\left((1750-0)/(2)\right)^2+(800)^2}\\\sigma_(max)=875+√(\left(875)^2+(800)^2) \\\sigma_(max)=875+√(765625+640000)\\\sigma_(max)=875+1185.59\\\sigma_(max)=2060.59 \text{psf}]()
Similarly, the minimum normal stress is given as
![\sigma_(min)=(\sigma_x+\sigma_y)/(2)-\sqrt{\left((\sigma_x-\sigma_y)/(2)\right)^2+\tau_(xy)^2}\\\sigma_(min)=(1700+0)/(2)-\sqrt{\left((1700-0)/(2)\right)^2+(800)^2}\\\sigma_(min)=875-√((875)^2+(800)^2)\\\sigma_(min)=875-√(765625+640000)\\\sigma_(min)=875-1185.59\\\sigma_(min)=-310.59 \text{ psf}](https://img.qammunity.org/2022/formulas/engineering/college/ynkcnnz210rht438kkuw6b93x18go47nta.png)
The maximum shear stress is given as
![\tau_(max)=(\sigma_(max)-\sigma_(min))/(2)\\\tau_(max)=(2060.59-(-310.59))/(2)\\\tau_(max)=(2371.18)/(2)\\\tau_(max)=1185.59 \text{psf}](https://img.qammunity.org/2022/formulas/engineering/college/fr76zlngnaahyrrm45gnqrxomicmc6olhj.png)