Answer:
median = 93.5
median = 65
MAD = 7.125
MAD = 3.75
Explanation:
The median is the middle value when the values of the data set are placed in order from smallest to largest.
Data set: 72 82 92 93 94 97 98 102
As the number of values in the data set is even, the median is the mean of the middle two values.
![\implies \sf median=(93+94)/(2)=93.5](https://img.qammunity.org/2022/formulas/mathematics/college/qepuu75t7oaw1p2bfsr9v1fbr0ks3vgpse.png)
Data set: 53 59 64 65 65 66 67 69
As the number of values in the data set is even, the median is the mean of the middle two values.
![\implies \sf median=(65+65)/(2)=65](https://img.qammunity.org/2022/formulas/mathematics/college/xlomyrhdwqusrp4xez9o2oe2ihpiptjfiv.png)
To find the Mean Absolute Deviation (MAD):
1. calculate the mean (by summing the data values and dividing by the number of values)
2. Subtract the mean from each value in the data set and take the absolute value of each result.
3. Sum the absolute values from step 2.
4. Divide by the number of values.
Data set: 72, 82, 93, 98, 102, 97, 92, 94
![\sf Mean=(72+82+93+98+102+97+92+94)/(8)=91.25](https://img.qammunity.org/2022/formulas/mathematics/college/wn4plq9n6h9cjmixy3q5rofd7sc0c2snpn.png)
|72 - 91.25| = 19.25
|82 - 91.25| = 9.25
|93 - 91.25| = 1.75
|98 - 91.25| = 6.75
|102 - 91.25| = 10.75
|97 - 91.25| = 5.75
|92 - 91.25| = 0.75
|94 - 91.25| = 2.75
Sum of absolute values = 57
![\sf MAD=(57)/(8)=7.125](https://img.qammunity.org/2022/formulas/mathematics/college/pmkytypd7oc5i3bjoy2qjk56qonjrf1fbq.png)
Data set: 53 59 64 65 65 66 67 69
![\sf Mean=(53 +59+ 64+ 65+ 65+ 66+ 67+ 69)/(8)=63.5](https://img.qammunity.org/2022/formulas/mathematics/college/3g4yn62zdacxju7wy157pvyj6yucp0nnjw.png)
|53 - 63.5| = 10.5
|59 - 63.5| = 4.5
|64 - 63.5| = 0.5
|65 - 63.5| = 1.5
|65 - 63.5| = 1.5
|66 - 63.5| = 2.5
|67 - 63.5| = 3.5
|69 - 63.5| = 5.5
Sum of absolute values = 30
![\sf MAD=(30)/(8)=3.75](https://img.qammunity.org/2022/formulas/mathematics/college/k5ic4dktfooawyyhgfdbw4l2z2kwqbw4uy.png)