Given:
The sides of each brace have lengths 63 feet, 46 feet, and 40 feet.
To find:
The measure of the angle opposite the 46 foot side.
Solution:
According to the Law of Cosines:
![\cos A=(b^2+c^2-a^2)/(2bc)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mn2josgcr9jmx3uw7rn38tfz9l3v8xp23h.png)
We need to find the measure of the angle opposite the 46 foot side. So,
and the other sides are
.
![\cos A=((63)^2+(40)^2-(46)^2)/(2(63)(40))](https://img.qammunity.org/2022/formulas/mathematics/high-school/1icddu1jtesunt16pzpjypz617m8m4aw27.png)
![\cos A=(3969 +1600-2116)/(5040)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lzzy52uhuewvrtsgu27c6laz4z707ypje5.png)
![\cos A=(3453)/(5040)](https://img.qammunity.org/2022/formulas/mathematics/high-school/86hm8ikgj8rclzyroypfhm0nf7j8627vq6.png)
![\cos A=(1151)/(1680)](https://img.qammunity.org/2022/formulas/mathematics/high-school/w8vcfuh1s7x7bvhs92yt3zjeie9wixj867.png)
Taking cos inverse on both sides, we get
![A=\cos^(-1)(1151)/(1680)](https://img.qammunity.org/2022/formulas/mathematics/high-school/33eqlows9ec68n30cm7wojn7m85r06qde8.png)
![A=46.75503](https://img.qammunity.org/2022/formulas/mathematics/high-school/8esmljswj8yxjejftlybx5ouvhze63ji8d.png)
![A\approx 47](https://img.qammunity.org/2022/formulas/mathematics/high-school/zctqorl0cls9pwweljotljpzczs1m4ac7f.png)
Therefore, the measure of the angle opposite the 46 foot side is 47 degrees.