Answer:
![(0,0), (3,-27)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ucjqc2bgj3m4ti9twxw2oi9fol9y0i7z3b.png)
Explanation:
Given
Curve is
![y=x^4-4x^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/y9up3o7xbyqxypgv5allg96sfrq5mavahb.png)
The stationary point on a differentiable function is the points where the differentiation of the function is zero i.e. slope is zero at that point.
Differentiate the curve
![f(x)=x^4-4x^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/brgla279ve73pafqr7q2xhmlns6pxd4e6t.png)
![\Rightarrow f'(x)=4x^3-12x^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/8qvgrogozeyhpu2ghwely2gje1nl4j8624.png)
Equate it to zero
![\Rightarrow 4x^3-12x^2=0\\\Rightarrow 4x^2(x-3)=0\\\Rightarrow x=0,0,3](https://img.qammunity.org/2022/formulas/mathematics/high-school/8ib0mlx09k3vr8z0bf8yliaz8pvkwmc3yx.png)
Put
in the function
![f(x)=x^4-4x^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/brgla279ve73pafqr7q2xhmlns6pxd4e6t.png)
![\Rightarrow f(0)=0\\\Rightarrow f(3)=3^4-4(3)^3\\\Rightarrow f(3)=81-108\\\Rightarrow f(3)=-27](https://img.qammunity.org/2022/formulas/mathematics/high-school/qsb48vh2roax1iqyptezrjbix4t6rbrxc0.png)
Therefore, the stationary points are
![(0,0), (3,-27)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ucjqc2bgj3m4ti9twxw2oi9fol9y0i7z3b.png)