86.3k views
3 votes
Find the following trigonometric Fourier Series:

Find the following trigonometric Fourier Series:-example-1
User JdGhuman
by
4.2k points

1 Answer

4 votes

(a) Extend the definition of f(x) to make it an even function f*(x),


f^*(x)=\begin{cases}0&amp;\text{if }-2\le x<-1\\1&amp;\text{if }0\le x\le1\\0&amp;\text{if }1<x\le2\end{cases}

and we take f* to be periodic over an interval of length P = 4. We compute the coefficients of the cosine series:


a_n = \displaystyle\frac2P \int_(-2)^2 f^*(x)\cos\left(\frac{2n\pi}Px\right)\,\mathrm dx = \frac{2\sin\left(\frac{n\pi}2\right)}{n\pi}

Note that a₀ = 1 (you can compute the integral again without the cosine, or just take the limit as n -> 0). For all other even integers n, the numerator vanishes, so we split off the odd case for n = 2k - 1 :


a_(2k-1) = \frac{2\sin\left(\frac{(2k-1)\pi}2\right)}{(2k-1)\pi}

Then the cosine series of f(x) is


\displaystyle \frac{a_0}2 + \sum_(k=1)^\infty a_(2k-1)\cos\left(\frac{(2k-1)\pi}2x\right)

(b) For the sine series, you instead extend f(x) to an odd function f*(x),


f^*(x)=\begin{cases}-1&amp;\text{if }-2\le x\le-1\\x&amp;\text{if }-1<x<1\\1&amp;\text{if }1\le x\le2\end{cases}

Again, P = 4, and the coefficient of the sine series are given by


b_n = \displaystyle\frac2P\int_(-2)^2f^*(x)\sin\left(\frac{2n\pi}Px\right)\,\mathrm dx

which we can again split into the even/odd cases,


b_(2k) = -\frac1{k\pi}


b_(2k-1) = (4(-1)^(k+1)+2(2k-1)\pi)/((2k-1)^2\pi^2)

So the sine series is


\displaystyle \sum_(k=1)^\infty\left(b_(2k)\sin\left(k\pi x\right) + b_(2k-1)\sin\left(\frac{(2k-1)\pi}2x\right)\right)

I've attached plots of the extended versions of f(x) along with the corresponding series up to degree 4.

Find the following trigonometric Fourier Series:-example-1
Find the following trigonometric Fourier Series:-example-2
User Marksyzm
by
3.5k points