221k views
0 votes
Find all complex solutions of the equation z⁴-1-i=0.​

1 Answer

1 vote

Answer:

Explanation:

hello :

z⁴=1+i given : z² = t t is the complex number so : z⁴= (z²)² =t²

solve for t this equation : t² = 1+i

if : t = x+iy t² =(x+iy)² = x²+2xiy+(iy)² =x²-y²+2xyi ...... ( i² = -1)

t² = 1+i means : x²-y²+2xyi = 1+i

you have this system : x²-y² = 1.....(*)

2xy = 1.....(**)

slve for x and y you ca add this equation : ....(***)

( use : t² = 1+i

/t²/ = /1+i/ so :/t/² = /1+i/ .... (√(x²+y²))²=√(1²+1²) =√2 means x²+y² = √2)

the system is : x²-y² = 1.....(*)

2xy = 1.....(**)

x²+y² = √2 ....(***)

add (*) and (***) : 2x²= 1+√2

x² = (√2+1)/2

substrac (*) and (***) you have : y² = (√2-1)/2

use (**) the proudect xy is positif (same sign) so :

x=√( (√2+1)/2) and y = √( (√2-1)/2) so : t1 =√( (√2+1)/2)+i√( (√2-1)/2)

x= -√( (√2+1)/2) and y = -√( (√2-1)/2) so :t2= -t1

same method for equation : z² =t1 ..(2 solution ) and z² = t2..(2 solution )

User Kavinda Senarathne
by
3.6k points