121k views
0 votes
Find the perimeter of the pentagon MNPQR with vertices ​M(2​, 4​), ​N(5​, 8​), ​P(​8, 4​), ​Q(8​, 1​), and ​R(2​, 1​)

User Louis XIV
by
7.5k points

2 Answers

1 vote

answer

The pentagon MNPQR has a perimeter of 22 units.

Geometrically speaking, the perimeter of the pentagon is the sum of the lengths of each side, that is:

p = MN + NP + PQ + QR + RMp=MN+NP+PQ+QR+RM (1)

p = \sqrt{\overrightarrow{MN}\,\bullet \, \overrightarrow{MN}} + \sqrt{\overrightarrow{NP}\,\bullet \, \overrightarrow{NP}} + \sqrt{\overrightarrow{PQ}\,\bullet \, \overrightarrow{PQ}} + \sqrt{\overrightarrow{QR}\,\bullet \, \overrightarrow{QR}} + \sqrt{\overrightarrow{RM}\,\bullet \, \overrightarrow{RM}}p=

MN

MN

+

NP

NP

+

PQ

PQ

+

QR

QR

+

RM

RM

(1b)

If we know that M(x,y) = (2,4)M(x,y)=(2,4) , N(x,y) = (5,8)N(x,y)=(5,8) , P(x,y) = (8,4)P(x,y)=(8,4) , Q(x,y) = (8,1)Q(x,y)=(8,1) and R(x,y) = (2,1)R(x,y)=(2,1) , then the perimeter of the pentagon MNPQR is:

p =\sqrt{(5-2)^{2}+(8-4)^{2}} + \sqrt{(8-5)^{2}+(4-8)^{2}}+\sqrt{(8-8)^{2}+(1-4)^{2}}+\sqrt{(2-8)^{2}+(1-1)^{2}}+\sqrt{(2-2)^{2}+(4-1)^{2}}p=

(5−2)

2

+(8−4)

2

+

(8−5)

2

+(4−8)

2

+

(8−8)

2

+(1−4)

2

+

(2−8)

2

+(1−1)

2

+

(2−2)

2

+(4−1)

2

p = \sqrt{3^{2}+4^{2}} + \sqrt{3^{2}+(-4)^{2}}+\sqrt{0^{2}+(-3)^{2}}+\sqrt{(-6)^{2}+0^{2}}+\sqrt{0^{2}+3^{2}}p=

3

2

+4

2

+

3

2

+(−4)

2

+

0

2

+(−3)

2

+

(−6)

2

+0

2

+

0

2

+3

2

p = 22p=22

The pentagon MNPQR has a perimeter of 22 units.

User Hank
by
7.6k points
2 votes

Answer:

The pentagon MNPQR has a perimeter of 22 units.

Explanation:

Geometrically speaking, the perimeter of the pentagon is the sum of the lengths of each side, that is:


p = MN + NP + PQ + QR + RM (1)


p = \sqrt{\overrightarrow{MN}\,\bullet \, \overrightarrow{MN}} + \sqrt{\overrightarrow{NP}\,\bullet \, \overrightarrow{NP}} + \sqrt{\overrightarrow{PQ}\,\bullet \, \overrightarrow{PQ}} + \sqrt{\overrightarrow{QR}\,\bullet \, \overrightarrow{QR}} + \sqrt{\overrightarrow{RM}\,\bullet \, \overrightarrow{RM}} (1b)

If we know that
M(x,y) = (2,4),
N(x,y) = (5,8),
P(x,y) = (8,4),
Q(x,y) = (8,1) and
R(x,y) = (2,1), then the perimeter of the pentagon MNPQR is:


p =\sqrt{(5-2)^(2)+(8-4)^(2)} + \sqrt{(8-5)^(2)+(4-8)^(2)}+\sqrt{(8-8)^(2)+(1-4)^(2)}+\sqrt{(2-8)^(2)+(1-1)^(2)}+\sqrt{(2-2)^(2)+(4-1)^(2)}
p = \sqrt{3^(2)+4^(2)} + \sqrt{3^(2)+(-4)^(2)}+\sqrt{0^(2)+(-3)^(2)}+\sqrt{(-6)^(2)+0^(2)}+\sqrt{0^(2)+3^(2)}


p = 22

The pentagon MNPQR has a perimeter of 22 units.

User Ashutosh Patole
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories