26.9k views
0 votes
Use the suggested substitution to write the expression as a trigonometric expression. Simplify your answer as much as possible. Assume 0≤θ≤π2.


\sqrt{9x^2+36 , x/2=cot(∅)

User Fleur
by
4.3k points

1 Answer

2 votes

Answer:


√(9x^2+36) = 6 \csc(\theta)

Explanation:

Given


(x)/(2)=\cot(\theta)

Required

Express
√(9x^2+36) as trigonometry expression


√(9x^2+36)

Factorize


√(9x^2+36) = √(9(x^2+4))

Split


√(9x^2+36) = √(9) * √((x^2+4))


√(9x^2+36) = 3 * √((x^2+4))


√(9x^2+36) = 3√((x^2+4))

We have:


(x)/(2)=\cot(\theta)

Make x the subject


x = 2 \cot(\theta)

So:


√(9x^2+36) = 3√((x^2+4))


√(9x^2+36) = 3√(((2 \cot(\theta))^2+4))

Evaluate all squares


√(9x^2+36) = 3√(4\cot^2(\theta)+4)

Factorize


√(9x^2+36) = 3√(4(\cot^2(\theta)+1))

Split


√(9x^2+36) = 3√(4) * √(\cot^2(\theta)+1)


√(9x^2+36) = 3*2 * √(\cot^2(\theta)+1)


√(9x^2+36) = 6 * √(\cot^2(\theta)+1)

In trigonometry


\cot^2(\theta)+1 = \csc^2(\theta)

So, we have:


√(9x^2+36) = 6 * √(\csc^2(\theta))

Evaluate the square root


√(9x^2+36) = 6 * \csc(\theta)


√(9x^2+36) = 6 \csc(\theta)

User Buser
by
4.5k points