Given:
Consider the given function is:
![f(x)=x^2-8x+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/6y0dj0aiadche36pjhb1c3xpk1dt87exe6.png)
To find:
The average rate of change of the function over the interval
.
Solution:
The average rate of change of the function f(x) over the interval [a,b] is:
![m=(f(x_2)-f(x_1))/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mb5wdxg2q78221pz9n93ire4s80apbau8q.png)
We have,
![f(x)=x^2-8x+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/6y0dj0aiadche36pjhb1c3xpk1dt87exe6.png)
At
,
![f(-1)=(-1)^2-8(-1)+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/pcdk8ovjjb8yne4g4uykli916z168cm0l1.png)
![f(-1)=1+8+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/8k8yjr7pwdbwuohcfu8vas0cyjpqwkz5ph.png)
![f(-1)=22](https://img.qammunity.org/2022/formulas/mathematics/high-school/dyugvw8u02f1zsb922mdxpzlkznfnjxiln.png)
At
,
![f(6)=(6)^2-8(6)+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/4my1y16z4slb0ltfbp4wnoma6vduap6c42.png)
![f(6)=36-48+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/b28wjbw4mzawz5rt0helzr1rxmyudqyv5t.png)
![f(6)=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/nn459wdqttzz0wsgmd4p8rxi407dzz4azy.png)
Now, the average rate of change of the function f(x) over the interval
is:
![m=(f(6)-f(-1))/(6-(-1))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hjfnfkj42ftzx7wo84ar5ulmtnwovxls90.png)
![m=(1-22)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2xrf1onh317uccoglqtwkubho5pks97awh.png)
![m=(-21)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4y533o7e9k4ms2b2o3ugd1i0wscuj5mwbo.png)
![m=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/vi648d1y07rgkbnrxh9n4clkscinswfkle.png)
Therefore, the average rate of change of the function f(x) over the interval
is -3.