Answer:
The possible values of
are -2.944 and -9.055, respectively.
Explanation:
From statement we know that
. By Analytical Geometry, we use the equation of a line segment, which is an application of the Pythagorean Theorem:
![AB = 2\cdot BC](https://img.qammunity.org/2022/formulas/mathematics/college/vabyaiwells88ev1kvhzw3365tsatvz8nb.png)
(1)
Where:
,
,
- x-Coordinates of points A, B and C.
- y-Coordinates of points A, B and C.
![(x_(B)-x_(A))^(2)+(y_(B)-y_(A))^(2) = 4\cdot (x_(C)-x_(B))^(2)+4\cdot (y_(C)-y_(B))^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/l5gg0xdxy3p5be6eychqnl267s16s6kv4w.png)
Then, we expand and simplify the expression above:
![x_(B)^(2)-2\cdot x_(A)\cdot x_(B) +x_(A)^(2) +y_(B)^(2)-2\cdot y_(A)\cdot y_(B) + y_(A)^(2) = 4\cdot (x_(C)^(2)-2\cdot x_(C)\cdot x_(B)+x_(B)^(2))+4\cdot (y_(C)^(2)-2\cdot y_(C)\cdot y_(B)+y_(B)^(2))](https://img.qammunity.org/2022/formulas/mathematics/college/i2fvdru142ipeog0vl4d9slf3mithbsm39.png)
![x_(B)^(2)-2\cdot x_(A)\cdot x_(B) + x_(A)^(2) +y_(B)^(2)-2\cdot y_(A)\cdot y_(B) + y_(A)^(2) = 4\cdot x_(A)^(2)-8\cdot x_(C)\cdot x_(B)+4\cdot x_(B)^(2)+4\cdot y_(C)^(2)-8\cdot y_(C)\cdot y_(B)+4\cdot y_(B)^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/ai8vgnqpnlesb0m4boj3cbdq6obcel3eda.png)
If we know that
,
,
,
,
and
, then we have the following expression:
![1 -10 +25 +b^(2) -12\cdot b+36 = 100 -8 +4 +36+24\cdot b +4\cdot b^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/mk53s2f3jy9k95vysihjc3r2r0dqdj5lii.png)
![b^(2)-12\cdot b +52 = 4\cdot b^(2)+24\cdot b +132](https://img.qammunity.org/2022/formulas/mathematics/college/elzeo73qo5yygdub26teyn89k1ketstd1g.png)
![3\cdot b^(2)+36\cdot b +80 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/i026dpio8c1y9gv8alk25smcgm0ruigso2.png)
This is a second order polynomial, which means the existence of two possible real solutions. By Quadratic Formula, we have the following y-coordinates for point B:
,
![b_(2) \approx -9.055](https://img.qammunity.org/2022/formulas/mathematics/college/we2sayv5aoe3odw5xv1wv4q3eskgvqrl74.png)
In consequence, the possible values of
are -2.944 and -9.055, respectively.