130k views
2 votes
F(x)= -2x^2+3x-7, calculate the average rate of change on the interval [1, 1+h]

1 Answer

4 votes

Answer:


Rate = -2h-1

Explanation:

Given


f(x) = -2x^2 + 3x - 7


Interval: [1,1+h]

Required

The average rate of change

This is calculated as:


Rate = (f(b) - f(a))/(b - a)

Where:


[a,b] = [1,1+h]

So, we have:


Rate = (f(1+h) - f(1))/(1+h - 1)


Rate = (f(1+h) - f(1))/(h)

Calculate f(1+h) and f(1)


f(x) = -2x^2 + 3x - 7


f(1) = -2 * 1^2 + 3 * 1 - 7 = -6


f(1+h) = -2 * (1+h)^2 + 3 * (1+h) - 7

Evaluate squares and open bracket


f(1+h) = -2 * (1+h+h+h^2) + 3+3h - 7


f(1+h) = -2-2h-2h-2h^2 + 3+3h - 7


f(1+h) = -2-4h-2h^2 + 3+3h - 7

Collect like terms


f(1+h) = -2h^2-4h +3h-2+ 3 - 7


f(1+h) = -2h^2-h-6

So, we have:


Rate = (f(1+h) - f(1))/(h)


Rate = (-2h^2-h-6 - -6)/(h)


Rate = (-2h^2-h-6 +6)/(h)


Rate = (-2h^2-h)/(h)

Factorize the numerator


Rate = (h(-2h-1))/(h)

Divide


Rate = -2h-1

User Enkryptor
by
3.1k points