Answer:
The 95% confidence interval for the population mean mileage is
(27.917, 29.593)
The 98% confidence interval for the population mean mileage
(27.737, 29.762)
Explanation:
Step(i):-
Given that the random sample size 'n' = 64
Given that the mean of sample x⁻ = 28.75miles
Given that the standard deviation of the sample (S) = 3.4 miles
Degrees of freedom = n-1 = 64-1 =63
t₀.₀₅ = 1.9983
Step(ii):-
95% confidence interval for the population mean mileage is determined by
![(x^(-) - t_(0.05) (S)/(√(n) ) , x^(-) + t_(0.05) (S)/(√(n) ))](https://img.qammunity.org/2022/formulas/mathematics/college/nkkpi2wa92028v0tmzcsk0jg8r8kiiu9gp.png)
![(28.75-1.99(3.4)/(√(64) ),28.75 + 1.99 (3.4)/(√(64) ) )](https://img.qammunity.org/2022/formulas/mathematics/college/9u30828v13z82hl7okw2ddkv641va3m9yk.png)
(28.75 - 0.845 , 28.75 + 0.845)
(27.917 , 29.593)
Step(iii):-
98% confidence interval for the population mean mileage is determined by
![(x^(-) - t_(0.02) (S)/(√(n) ) , x^(-) + t_(0.02) (S)/(√(n) ))](https://img.qammunity.org/2022/formulas/mathematics/college/ftfmol96wxmv1sujcm91zrivq28dajzfp6.png)
![(28.75-2.3824(3.4)/(√(64) ),28.75 + 2.3824 (3.4)/(√(64) ) )](https://img.qammunity.org/2022/formulas/mathematics/college/etsncahrsvtm0ms0vt9yjzr93ktcb73taa.png)
(28.75 - 1.01252 , 28.75 + 1.01252)
(27.737 , 29.762)
Final answer:-
98% confidence interval for the population mean mileage is
(27.737 , 29.762)