133k views
5 votes
Help please!!

Integrate the following:

\displaystyle \int {x}^(2) {e}^(x) dx


User Andha
by
4.7k points

2 Answers

7 votes

Answer:


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) {e}^(x)- 2x {e}^(x) + 2 e^(x) + \rm C

Explanation:

we want to integrate the following integration:


\displaystyle \int {x}^(2) \cdot {e}^(x) dx

notice that, the integrand is in the multiplication of two different function in that case we can consider integration by parts given by:


\rm \displaystyle \int u \cdot v \: dx = u \int vdx - \int u' \left( \int v dx \right)dx

where u' can be defined by the differentiation of u

now we have to choose our u and v

which can be chosen by using the guideline:ILATE Inverse trig. , Logarithm, Algebraic expression, Trigonometry, Exponent.

since x comes first thus,


\displaystyle u = {x}^(2) \quad\text{and} \quad v = {e}^(x)

by figuring out the defferentiation of u,we acquire:


\displaystyle u' = 2x

altogether we get:


\rm \displaystyle \int {x}^(2) \cdot {e}^(x) \: dx = {x}^(2) \int {e}^(x) dx - \int 2x \left( \int {e}^(x) dx \right)dx

by figuring out the parentheses integration

we get:


\rm \displaystyle \int x^2 \cdot {e}^(x) \: dx = {x}^(2) \int {e}^(x) dx - \int2x \cdot {e}^(x) dx

now we again have integration of two different functions so let's choose our u and v once again which can be done using the guideline


\displaystyle u = 2x \quad\text{and} \quad v = {e}^(x)

by figuring out the defferentiation of u

we acquire:


\displaystyle \: u' = 2

altogether we get:


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) \int {e}^(x) dx - \left( 2x \int{e}^(x) dx- \int2 \left( \int{e}^(x)dx \right) dx \right)

by solving parentheses we get


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) \int {e}^(x) dx - \left( 2x {e}^(x) - 2 e^(x) dx \right)

by figuring out the integral we get:


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) {e}^(x)- \left( 2x {e}^(x) - 2 e^(x) \right)

remove parentheses:


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) {e}^(x)- 2x {e}^(x) + 2 e^(x)

at last we of course have to add constant of integration:


\rm \displaystyle \int x ^(2) \cdot {e}^(x) \: dx = {x}^(2) {e}^(x)- 2x {e}^(x) + 2 e^(x) + \rm C

and we are done!

User Norekhov
by
4.5k points
0 votes

Answer:


\displaystyle \int {x^2e^x} \, dx = e^x(x^2 - 2x + 2) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
  • Tabular Integration

Explanation:

*Note:

The answer below me is correct, but there is a simpler method of obtaining the answer.

Step 1: Define

Identify


\displaystyle \int {x^2e^x} \, dx

Step 2: Integrate

Use tabular integration.

  1. [Integrand] Differentiate/Integrate [Tabular Integration]:
    \displaystyle \\\begin{center}\begin{tabular} c \line{u & dv} \\\cline{1 - 2} x^2 & e^x \\\ 2x & e^x \\\ 2 & e^x \\\ 0 & e^x\end{tabular}\end{center}
  2. Write out expansion [Tabular Integration]:
    \displaystyle \int {x^2e^x} \, dx = x^2e^x - 2xe^x + 2e^x + C
  3. Factor:
    \displaystyle \int {x^2e^x} \, dx = e^x(x^2 - 2x + 2) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Fmucar
by
3.5k points