Given:
![\sin x=-(15)/(17)](https://img.qammunity.org/2022/formulas/mathematics/high-school/til97xqc09o5ydbjwzvnkgis95kyl4gl9u.png)
x lies in the III quadrant.
To find:
The values of
.
Solution:
It is given that x lies in the III quadrant. It means only tan and cot are positive and others are negative.
We know that,
![\sin^2 x+\cos^2 x=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ifwd9eajynl9owzrgnnlx8ks7bluhyb21n.png)
![(-(15)/(17))^2+\cos^2 x=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/56apeffpsa2ewzqy147wemfjnfxitu9mjq.png)
![\cos^2 x=1-(225)/(289)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vkel3po7r796j8e8hy21mw4xju44zl8rwx.png)
![\cos x=\pm\sqrt{(289-225)/(289)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nizqfxrfp2q5da8pt1soctk0iwpbpppyza.png)
x lies in the III quadrant. So,
![\cos x=-\sqrt{(64)/(289)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/jv9yz3smxz5h7nca38xy5t0jl30z43ena7.png)
![\cos x=-(8)/(17)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e2arvxdkcwpnn5uuek0bcejlouczbzyr0e.png)
Now,
![\sin 2x=2\sin x\cos x](https://img.qammunity.org/2022/formulas/mathematics/high-school/g13946fjjr2grxfb3el148ag7oh0hq0ka1.png)
![\sin 2x=2* (-(15)/(17))* (-(8)/(17))](https://img.qammunity.org/2022/formulas/mathematics/high-school/fwqj98td6wmup8jdn4kq2wrdx728xjisqd.png)
![\sin 2x=-(240)/(289)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o38o04xndy3nld2gyhg4ql31zcvps2nd3j.png)
And,
![\cos 2x=1-2\sin^2x](https://img.qammunity.org/2022/formulas/mathematics/high-school/glxspl0oeg6b22xblx64kqtbqrrcpmnclj.png)
![\cos 2x=1-2(-(15)/(17))^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/em59ognu3tuywk74kxivd0av1y53ybtvn1.png)
![\cos 2x=1-2((225)/(289))](https://img.qammunity.org/2022/formulas/mathematics/high-school/3p9owc7cdhz6e8xc9nkeek2x5r7uxx7nwt.png)
![\cos 2x=(289-450)/(289)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rt8z81gyye5tqygylxwse4my7v0yvg8y0b.png)
![\cos 2x=-(161)/(289)](https://img.qammunity.org/2022/formulas/mathematics/high-school/t5vuqycaratk80s3utg2fxmqt14ow0zo1i.png)
We know that,
![\tan 2x=(\sin 2x)/(\cos 2x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/uin4b70yk0tqr30do479tf44pr9dbe5brj.png)
![\tan 2x=(-(240)/(289))/(-(161)/(289))](https://img.qammunity.org/2022/formulas/mathematics/high-school/h8u29zrfy507bkceagqc74xgvowzl285d0.png)
![\tan 2x=(240)/(161)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ibrfmpovan9utt4d5irsjso6jyxnoa9bnz.png)
Therefore, the required values are
.