184k views
3 votes
 Find sin2x, cos2x, and tan2x if sinx=-15/17 and x terminates in quadrant III

User Msrc
by
3.7k points

1 Answer

0 votes

Given:


\sin x=-(15)/(17)

x lies in the III quadrant.

To find:

The values of
\sin 2x, \cos 2x, \tan 2x.

Solution:

It is given that x lies in the III quadrant. It means only tan and cot are positive and others are negative.

We know that,


\sin^2 x+\cos^2 x=1


(-(15)/(17))^2+\cos^2 x=1


\cos^2 x=1-(225)/(289)


\cos x=\pm\sqrt{(289-225)/(289)}

x lies in the III quadrant. So,


\cos x=-\sqrt{(64)/(289)}


\cos x=-(8)/(17)

Now,


\sin 2x=2\sin x\cos x


\sin 2x=2* (-(15)/(17))* (-(8)/(17))


\sin 2x=-(240)/(289)

And,


\cos 2x=1-2\sin^2x


\cos 2x=1-2(-(15)/(17))^2


\cos 2x=1-2((225)/(289))


\cos 2x=(289-450)/(289)


\cos 2x=-(161)/(289)

We know that,


\tan 2x=(\sin 2x)/(\cos 2x)


\tan 2x=(-(240)/(289))/(-(161)/(289))


\tan 2x=(240)/(161)

Therefore, the required values are
\sin 2x=-(240)/(289),\cos 2x=-(161)/(289),\tan 2x=(240)/(161).

User Mohamed Nizar
by
3.4k points