162k views
4 votes
How to solve this? Is the question correct? ty :)

How to solve this? Is the question correct? ty :)-example-1

1 Answer

5 votes

Answer:

The proposition is true.

Explanation:

Now we proceed to demostrate that expression given is true by algebraic means:

1)
(x^(-1)+y^(-1))/(x^(-1))+(x^(-1)-y^(-1) )/(y^(-1)) Given

2)
(y^(-1)\cdot (x^(-1)+y^(-1))+x^(-1)\cdot (x^(-1)-y^(-1)))/(x^(-1)\cdot y^(-1))
(a)/(b) + (c)/(d) = (a\cdot d+b\cdot c)/(b\cdot d)

3)
(x^(-1)\cdot y^(-1)+y^(-2)+x^(-2)-x^(-1)\cdot y^(-1))/(x^(-1)\cdot y^(-1)) Distributive property/
a^(b)\cdot a^(c) = a^(b+c)

4)
(x^(-2)+y^(-2))/((x\cdot y)^(-1)) Commutative, associative and modulative properties/Existence of additive inverse/
a^(b)\cdot c^(b) = (a\cdot c)^(b)

5)
[(x\cdot y)^(-1)]^(-1)\cdot (x^(-2)+y^(-2)) Commutative property/Definition of division

6)
(x\cdot y)\cdot (x^(-2)+y^(-2))
(x^(-1))^(-1)

7)
x^(-1)\cdot y + x\cdot y^(-1) Distributive property/Associative property/
a^(b)\cdot a^(c) = a^(b+c)

8)
(x^(-1)\cdot y^(-1))\cdot y^(2) + (x^(-1)\cdot y^(-1))\cdot x^(2) Modulative property/Existence of additive inverse/
a^(b)\cdot a^(c) = a^(b+c)

9)
(x^(-1)\cdot y^(-1))\cdot (x^(2)+y^(2)) Distributive property

10)
(x\cdot y)^(-1)\cdot (x^(2)+y^(2))
a^(b)\cdot c^(b) = (a\cdot c)^(b)

11)
(x^(2)+y^(2))/(x\cdot y) Commutative property/Definition of division/Result

User Sheneka
by
4.3k points