Answer:
It takes 21.7 seconds for Skid to reach the edge of the pond.
Step-by-step explanation:
We can calculate the time that takes Skid to reach the edge of the pond by conservation of linear momentum:
(1)
Where:
m₁: is the Skid's mass
m₂: is the book's mass = 2.6 kg
: is the initial speed of Skid = 0 (he was at rest)
: is the initial speed of the book = 0 (it was at rest)
: is the final speed of Skid =?
: is the final speed of the book = 4 m/s. This value is negative since it is moving in the opposite direction of Skid.
First, we need to calculate Skid's mass.
![m_(1) = (P)/(g)](https://img.qammunity.org/2022/formulas/physics/college/iix6yikrie8fzkcoajvgf55l8ppr1ijsv8.png)
Where:
P: is the weight of Skid = 440 N
g: is the acceleration due to gravity = 9.81 m/s²
![m_(1) = (P)/(g) =(440 N)/(9.81 m/s^(2)) = 44.8 kg](https://img.qammunity.org/2022/formulas/physics/college/f8e9yvl2oohuvlzfd3ojy1clrl9rf2iuzh.png)
Now, we can find the speed of Skid from equation (1):
![v_{1_(f)} = (2.6 kg*4 m/s)/(44.8 kg) = 0.23 m/s](https://img.qammunity.org/2022/formulas/physics/college/vd1pkns7d07g0h3k5jfatgl1x4s4tpwwgs.png)
Finally, the time to reach the edge can be found by using the following equation:
![v_{1_(f)} = (d)/(t)](https://img.qammunity.org/2022/formulas/physics/college/22bz94fd6pzkg8f5bru9e119nnknq7r9ey.png)
Where:
d: is the distance = radius = 5 m
t: is the time =?
![t = \frac{d}{v_{1_(f)}} = (5 m)/(0.23 m/s) = 21.7 s](https://img.qammunity.org/2022/formulas/physics/college/g4fel1gquhurss3g4l8ihpb18twyujs8y1.png)
Therefore, it takes 21.7 seconds for Skid to reach the edge of the pond.
I hope it helps you!