Answer:
Option A.
![(f_of^(-1))(-2)=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/miw4rfhkavuuh8kfvpnjh1ohqmhwt1d81h.png)
Explanation:
Point to remember while solving the question of function,
![(f_of^(-1))(x)=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/9henobqo14t02g4xzioi6b5nma7dkhsxbg.png)
Here, 'f' is the parent function and
is the inverse of the function 'f'.
So for the given function,
f(x) = 2x - 2
![(f_of^(-1))(x)=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/9henobqo14t02g4xzioi6b5nma7dkhsxbg.png)
For x = -2
![(f_of^(-1))(-2)=(-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/79ldtxeo4zycohesn6n6kf30bvz6mo1fnh.png)
Therefore, Option A will be the correct answer.