Answer:
ωf = 113.95 rev/s
t = 1.26 s
Step-by-step explanation:
We can use the third equation of motion to find out the final spinning speed of the wheel:
![2\alpha \theta = \omega_f^2 -\omega_i^2\\](https://img.qammunity.org/2022/formulas/physics/college/fppj33khlkpqabfyb4fsghguxbqamng19n.png)
where,
α = angular acceleration = 65 rev/s²
θ = No. of revolutions completed = 92 rev
ωf = final angular speed = ?
ωi = initial angular speed = 32 rev/s
Therefore,
![(2)(65\ rev/s^2)(92\ rev) = \omega_f^2 - (32\ rev/s)^2\\\omega_f^2 = 11960\ rev^2/s^2 + 1024\ rev^2/s^2\\\omega_f = √(12984\ rev^2/s^2)](https://img.qammunity.org/2022/formulas/physics/college/c4d8egw7ju9lz560rgbgmovttsciga2849.png)
ωf = 113.95 rev/s
Now, for the time we can use the first equation of motion:
![\omega_f = \omega_i +\alpha t\\113.95\ rev/s - 32\ rev/s = (65\ rev/s^2)t\\t = (81.95\ rev/s)/(65\ rev/s^2)\\\\](https://img.qammunity.org/2022/formulas/physics/college/qu9s8kgghvsepp27otk2usqy3pq0g7p8d3.png)
t = 1.26 s