(a) If f(x) is to be a proper density function, then its integral over the given support must evaulate to 1:
![\displaystyle\int_(-\infty)^\infty f(x)\,\mathrm dx = \int_0^\infty cxe^(-x^2)\,\mathrm dx=1](https://img.qammunity.org/2022/formulas/mathematics/college/kfwp3f7sdpsdj0zungqgnrl8u77r286p82.png)
For the integral, substitute u = x ² and du = 2x dx. Then as x → 0, u → 0; as x → ∞, u → ∞:
![\displaystyle\frac12\int_0^\infty ce^(-u)\,\mathrm du=\frac c2\left(\lim_(u\to\infty)(-e^(-u))-(-1)\right)=1](https://img.qammunity.org/2022/formulas/mathematics/college/j0ysbkl6hq9zo9aduskdpqckgsfywo7prp.png)
which reduces to
c / 2 (0 + 1) = 1 → c = 2
(b) Find the probability P(1 < X < 3) by integrating the density function over [1, 3] (I'll omit the steps because it's the same process as in (a)):
![\displaystyle\int_1^3 2xe^(-x^2)\,\mathrm dx = \boxed{(e^8-1)/(e^9)} \approx 0.3678](https://img.qammunity.org/2022/formulas/mathematics/college/r9bud85dllf42z7hdf7a84ss2ug0ozxg9q.png)