134k views
8 votes
Question 15 (5 points)
Find the angle between u = <7, -2> and v= (-1,2>.

User Krycke
by
6.0k points

1 Answer

11 votes

Answer:

Approximately
2.3127 radians, which is approximately
132.51^(\circ).

Explanation:

Dot product between the two vectors:


\begin{aligned}&amp; u\cdot v \\ =\; &amp; 7 * (-1) + (-2) * 2 \\ =\; &amp; (-11) \end{aligned}.

Magnitude of the two vectors:


\begin{aligned} \| u \| &amp;= \sqrt{{7}^(2) + {(-2)}^(2)} \\ &amp;= √(53) \end{aligned}.


\begin{aligned} \| v \| &amp;= \sqrt{{(-1)}^(2) + {2}^(2)} \\ &amp;= √(5) \end{aligned}.

Let
\theta denote the angle between these two vectors. By the property of dot products:


\begin{aligned} \cos(\theta) &amp;= (u \cdot v)/(\|u\| \, \| v \|) \\ &amp;= ((-11))/((√(53))\, (√(5))) \\ &amp;= ((-11))/(√(265))\end{aligned}.

Apply the inverse cosine function
{\rm arccos} to find the value of this angle:


\begin{aligned} \theta &amp;= \arccos\left((u \cdot v)/(\| u \| \, \| v \|)\right) \\ &amp;= \arccos\left(((-11))/(√(265))\right) \\ &amp; \approx \text{$2.3127$ radians} \\ &amp;= 2.3127 * (180^(\circ))/(\pi) \\ &amp;\approx 132.51^(\circ)\end{aligned}.

User Vladimir Georgiev
by
6.3k points