Answer:
It takes 7.37 hours for the size of the sample to double.
Explanation:
Continuous exponential growth model:
The continuous exponential growth model for populations is given by:
![P(t) = P(0)e^(rt)](https://img.qammunity.org/2022/formulas/mathematics/college/o6wdof1virt7lwi8oxcrkqlfoei9f032t0.png)
In which P(0) is the initial population and r is the growth rate parameter, as a decimal.
Growth rate parameter of 9.4% per hour.
This means that
![r = 0.094](https://img.qammunity.org/2022/formulas/mathematics/college/8ov6hlh3hig1ggafp4l0w1t0hbf5n51t2q.png)
So
![P(t) = P(0)e^(rt)](https://img.qammunity.org/2022/formulas/mathematics/college/o6wdof1virt7lwi8oxcrkqlfoei9f032t0.png)
![P(t) = P(0)e^(0.094t)](https://img.qammunity.org/2022/formulas/mathematics/college/ug2lr38t4rs1c1ew2zw77gjdeesss4kr0m.png)
How many hours does it take for the size of the sample to double?
This is t for which P(t) = 2P(0). So
![P(t) = P(0)e^(0.094t)](https://img.qammunity.org/2022/formulas/mathematics/college/ug2lr38t4rs1c1ew2zw77gjdeesss4kr0m.png)
![2P(0) = P(0)e^(0.094t)](https://img.qammunity.org/2022/formulas/mathematics/college/14zvme9hxbt1snktm9d86hn30jz9da4buc.png)
![e^(0.094t) = 2](https://img.qammunity.org/2022/formulas/mathematics/college/72z8l3vfz6c8xy3ia6c9k2wpwb77dosxm8.png)
![\ln{e^(0.094t)} = ln(2)](https://img.qammunity.org/2022/formulas/mathematics/college/rdmvbdtcxjid1335igv86iif041mbf3oka.png)
![0.094t = ln(2)](https://img.qammunity.org/2022/formulas/mathematics/college/bync9ot5nt4l8svlhse38p804us75znx6d.png)
![t = (ln(2))/(0.094)](https://img.qammunity.org/2022/formulas/mathematics/college/nujvdgnfymzxdl1zeqoxqwrhkaaq3oaxml.png)
![t = 7.37](https://img.qammunity.org/2022/formulas/mathematics/college/aaa1yq5dihkwkwf5vivb9zxosojkdgamgv.png)
It takes 7.37 hours for the size of the sample to double.