Solution :
Given :
Wavelength of the thin beam of light, λ = 50 μm
Distance of the screen from the slit, D = 3.00 m
Width of the fringe, Δy = ±8.24 mm
Therefore, width of the slit is given by :
![$d=(n \lambda D)/(\Delta y)$](https://img.qammunity.org/2022/formulas/physics/high-school/poi4iujh05oilm3j3e1ucwbe0ktjd2ypwr.png)
![$=(2 * 50 * 10^(-9) * 3)/(2 * 8.24 * 10^(-3))$](https://img.qammunity.org/2022/formulas/physics/high-school/fr2knvqj552xmz3yuhb53w6zrs0nfdskry.png)
= 0.000018203 m
= 0.0182 mm
= 0.018 mm
The intensity of light is given by :
, where
![$\beta=(2 \pi D \sin \theta)/(\lambda)$](https://img.qammunity.org/2022/formulas/physics/high-school/63awj6etaajjj8akwxdhq23tqtk5ah5men.png)
![$I=I_0\left((\sin (\pi d \sin \theta)/(\lambda))/((\pi d \sin \theta)/(\lambda))\right)^2$](https://img.qammunity.org/2022/formulas/physics/high-school/zqx0i3jogeilmb8ho7cq0gpxovbnrzd2hj.png)
![$I=I_0\left((\sin (\pi d y)/(D\lambda))/((\pi d y)/(D\lambda))\right)^2$](https://img.qammunity.org/2022/formulas/physics/high-school/upnha2zbojkckeg40sfoox2dezwye1l5bo.png)
Now,
![$(dy)/(D \lambda) = (8.24 * 10^(-3)* 0.018 * 10^(-3))/(4 * 50* 10^(-9)* 4)$](https://img.qammunity.org/2022/formulas/physics/high-school/e5qs6ukb1ghlad2c6rw528gh09q54fwttx.png)
= 0.1854
≈ 0.18
![$I=I_0\left((\sin 0.56)/(0.56)\right)^2$](https://img.qammunity.org/2022/formulas/physics/high-school/imb4y3vqfriax4mty5gnl4jwiqilz9nssj.png)
![$=I_0 * 0.81$](https://img.qammunity.org/2022/formulas/physics/high-school/7yt37osdc0w7jwyrfj6tkdyx8sno6e4pru.png)
= 2 x0.81
![$= 1.62 \ W/m^2$](https://img.qammunity.org/2022/formulas/physics/high-school/cj27ynuuma9zh6cgnn9j4ldgna6egoevwr.png)