Answer:
Yes
Explanation:
Given
GH:
![-6y - x = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/598xo0x2h1yew07rpv5eqscwn7v87htqa2.png)
Required
Can EF be
![4 = y - (1)/(6)x](https://img.qammunity.org/2022/formulas/mathematics/high-school/d4bh91wmm01zhor24tryjlwwzx4uyge0os.png)
First, we determine the slope of GH
![-6y - x = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/598xo0x2h1yew07rpv5eqscwn7v87htqa2.png)
Solve for 6y
![6y = -x - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/fas9liug8avqcmet8308ct5irgdtz7vhdh.png)
Solve for y
![y = -(1)/(6)x - (2)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/m1cttaltq3fn4kfadef7shmk5dpbhexptj.png)
![y = -(1)/(6)x - (1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ffrfwvzqfb09p7vec72ksilp1s4h4gp8iq.png)
An equation has the form:
![y =mx + b](https://img.qammunity.org/2022/formulas/mathematics/college/8xumz1k8s1wwxd6hjbr5xmvat13axsc95m.png)
Where
![m = slope](https://img.qammunity.org/2022/formulas/mathematics/high-school/yjrlw8z0cel4p7mherpmwo193dphycf45p.png)
By comparison:
![m = -(1)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/difftzwdzuvyxbav981g4im5x8tx02o4fr.png)
Next, determine the slope of EF
![4 = y - (1)/(6)x](https://img.qammunity.org/2022/formulas/mathematics/high-school/d4bh91wmm01zhor24tryjlwwzx4uyge0os.png)
Make y the subject
![y = -(1)/(6)x + 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/iv0gz94bet37wwdhlzdtgp2y7c4hjhpzu5.png)
The slope is:
![m = -(1)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/difftzwdzuvyxbav981g4im5x8tx02o4fr.png)
Compare the slopes of both lines.
![m=m = -(1)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qigyd7o55wu6a8h2z6jkvh8c5xepjh16ly.png)
Since they have the same slopes, then the equation of EF is possible