Hello.
Let's solve the absolute value inequality.
In order to do that, let's imagine that |3x-4| is positive.
Since the absolute value of |3x-4| is 3x-4, we write 3x-4 and solve:
![\mathrm{3x-4\geq 8}](https://img.qammunity.org/2023/formulas/mathematics/college/9c7rcfa0serg6u7g31i9vnr4jnkzo4sqnz.png)
Now, move -4 to the right, using the opposite operation:
![\mathrm{3x\geq 8+4}](https://img.qammunity.org/2023/formulas/mathematics/college/ty48ch4vs428s4u20585u6oo8m8urt8vom.png)
Add:
![\mathrm{3x\geq 12}](https://img.qammunity.org/2023/formulas/mathematics/college/5bfmkprgq9oujdnt4skwfuna27qebod6wr.png)
Divide both sides by 3:
![\mathrm{x\geq 4}](https://img.qammunity.org/2023/formulas/mathematics/college/v7wc3cycbs3jnzgwbgu6ay4gz1xap28ise.png)
However, this is only 1 solution.
Let's imagine that |3x-4| is a negative number.
So, the inequality looks like so:
![\mathrm{-3x+4\geq 8}](https://img.qammunity.org/2023/formulas/mathematics/college/xwl0bfdfz99ejmcs20427j6hqqdv9e1fo5.png)
Move 4 to the right:
![\mathrm{-3x\geq 8-4}](https://img.qammunity.org/2023/formulas/mathematics/college/s9arwgiffxy3nodngnxq42yc50la599lmt.png)
![\mathrm{-3x\geq 4}](https://img.qammunity.org/2023/formulas/mathematics/college/9632h89jrayq0edfxsw5ljqy01ikvhi8ht.png)
Divide both sides by -3:
![\mathrm{x\leq \displaystyle-(4)/(3) }](https://img.qammunity.org/2023/formulas/mathematics/college/ejewn7fcsfbc0jov1m521qmac22qg75fpq.png)
Therefore, the solutions are
![\mathrm{x\geq 4}\\\mathrm{x\leq \displaystyle-(4)/(3) }](https://img.qammunity.org/2023/formulas/mathematics/college/e3qyq8ez9z6uip2ptqpigvj59zx3951p0g.png)
Note:
If we divide both sides of an inequality by a negative number, we flip the inequality sign.
I hope this helps you.
Have a nice day.
![\boxed{imperturbability}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4e5twsd8myuuptqybbee35e90dbwcl3efm.png)