174k views
2 votes
Help please!!

integrate the following:

\displaystyle \int ( \cos ^(2) (x) - \cos ^(2) ( \alpha ) )/( \cos( x) - \cos( \alpha ) )


User Aracelis
by
4.6k points

1 Answer

4 votes

Answer:


\displaystyle \sin(x) + x\cos( \alpha ) + \rm C

Explanation:

we are given


\displaystyle \int ( \cos ^(2) (x) - \cos ^(2) ( \alpha ) )/( \cos( x) - \cos( \alpha ) ) dx

we want to Integrate it

notice that, the denominator can be rewritten by using algebraic identity

remember that,


\displaystyle {a}^(2) - {b}^(2) = ( a + b)(a - b)

therefore

rewrite the denominator by using the identity:


\displaystyle \int ( ((\cos (x) + \cos ( \alpha) ) ( \cos(x) - \cos( \alpha ) ) )/( \cos( x) - \cos( \alpha ) )dx

reduce fraction:


\displaystyle \int \frac{ ((\cos (x) + \cos ( \alpha) ) ( \cancel{ \cos(x) -\cos( \alpha ) ) }}{ \cancel{\cos( x) - \cos( \alpha ) } }dx


\displaystyle \int \cos(x) + \cos( \alpha ) dx

recall that,


\rm\displaystyle \int f(x) \pm g(x)dx =\int f(x) \pm \int g(x)dx

by that

we get


\displaystyle \int \cos(x) dx + \int \cos( \alpha )dx

we also know that,


\displaystyle \int \cos(x) = \sin(x)dx

and also the Integration of a constant is always cx

so,


\displaystyle \sin(x) + x\cos( \alpha )

and of course we have to add constant


\displaystyle \sin(x) + x\cos( \alpha ) + \rm C

User Eddyb
by
4.4k points