223k views
1 vote
I need help with this question. Verify identity?!

I need help with this question. Verify identity?!-example-1
User AlexEfremo
by
3.9k points

1 Answer

2 votes

Answer:

1)
(\tan x+1)/(\tan x) - (\sec x\cdot \csc x + 1)/(\tan x + 1) Given

2)
((\tan x +1)^(2)-\tan x \cdot (\sec x\cdot \csc x +1))/(\tan x\cdot (\tan x + 1))
(a)/(b) + (c)/(d) = (a\cdot d + b\cdot c)/(a\cdot d)

3)
(\left((\sin x)/(\cos x) + 1 \right)^(2)-\left((\sin x)/(\cos x) \right)\cdot \left[\left((1)/(\cos x) \right)\cdot \left((1)/(\sin x) \right) + 1\right])/(\left((\sin x)/(\cos x) \right)\cdot \left((\sin x)/(\cos x) +1\right)) Identities for tangent, secant and cosecant functions.

4)
((\sin^(2) x)/(\cos^(2) x) + 2\cdot \left((\sin x)/(\cos x) \right) + 1 - (1)/(\cos^(2) x) - (\sin x)/(\cos x) )/((\sin^(2) x)/(\cos^(2) x) +(\sin x)/(\cos x) ) Distributive property/
(a)/(b)* (c)/(d) = (a\cdot c)/(b\cdot d)

5)
((\sin ^(2)x +2\cdot \sin x\cdot \cos x +\cos^(2)x -1-\sin x\cdot \cos x)/(\cos^(2) x) )/((\sin^(2)x +\sin x \cdot \cos x)/(\cos^(2)x) )
(a)/(b) + (c)/(d) = (a\cdot d + b\cdot c)/(a\cdot d)

6)
(\sin^(2)x+2\cdot \sin x \cdot \cos x +\cos^(2)x-1-\sin x\cdot \cos x)/(\sin^(2)x +\sin x \cdot \cos x)
((a)/(b) )/((c)/(d) ) = (a\cdot d)/(b\cdot c)

7)
(\sin x\cdot \cos x)/(\sin x \cdot (\sin x + \cos x)) Fundamental trigonometric identity/Existence of additive inverse/Modulative property/Distributive property

8)
(\cos x)/(\sin x + \cos x) Associative property/Existence of multiplicative inverse/Modulative property/Result.

Explanation:

Now we proceed to demonstrate by algebraic and trigonometric means the following trigonometric identity:


(\tan x+1)/(\tan x) - (\sec x\cdot \csc x + 1)/(\tan x + 1) = (\cos x)/(\sin x + \cos x)

1)
(\tan x+1)/(\tan x) - (\sec x\cdot \csc x + 1)/(\tan x + 1) Given

2)
((\tan x +1)^(2)-\tan x \cdot (\sec x\cdot \csc x +1))/(\tan x\cdot (\tan x + 1))
(a)/(b) + (c)/(d) = (a\cdot d + b\cdot c)/(a\cdot d)

3)
(\left((\sin x)/(\cos x) + 1 \right)^(2)-\left((\sin x)/(\cos x) \right)\cdot \left[\left((1)/(\cos x) \right)\cdot \left((1)/(\sin x) \right) + 1\right])/(\left((\sin x)/(\cos x) \right)\cdot \left((\sin x)/(\cos x) +1\right)) Identities for tangent, secant and cosecant functions.

4)
((\sin^(2) x)/(\cos^(2) x) + 2\cdot \left((\sin x)/(\cos x) \right) + 1 - (1)/(\cos^(2) x) - (\sin x)/(\cos x) )/((\sin^(2) x)/(\cos^(2) x) +(\sin x)/(\cos x) ) Distributive property/
(a)/(b)* (c)/(d) = (a\cdot c)/(b\cdot d)

5)
((\sin ^(2)x +2\cdot \sin x\cdot \cos x +\cos^(2)x -1-\sin x\cdot \cos x)/(\cos^(2) x) )/((\sin^(2)x +\sin x \cdot \cos x)/(\cos^(2)x) )
(a)/(b) + (c)/(d) = (a\cdot d + b\cdot c)/(a\cdot d)

6)
(\sin^(2)x+2\cdot \sin x \cdot \cos x +\cos^(2)x-1-\sin x\cdot \cos x)/(\sin^(2)x +\sin x \cdot \cos x)
((a)/(b) )/((c)/(d) ) = (a\cdot d)/(b\cdot c)

7)
(\sin x\cdot \cos x)/(\sin x \cdot (\sin x + \cos x)) Fundamental trigonometric identity/Existence of additive inverse/Modulative property/Distributive property

8)
(\cos x)/(\sin x + \cos x) Associative property/Existence of multiplicative inverse/Modulative property/Result.

User NeedAnswers
by
4.0k points