Answer:
(a)
![f(x) = \left \{ {{5x;\ 0<x\le 5} \atop {5x-5; x > 5}} \right.](https://img.qammunity.org/2022/formulas/mathematics/college/2oxfw72nyj64fs0pkals2yddhfh6mxgtf4.png)
(b) Rate = 5
(c) Rate = 5
Explanation:
Given
The attached graph
Solving (a): The piece-wise function
For the first line
Calculate the slope of the first line
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/i1pa2mybgkt3dkd7j6tklhm5t9tvmo4g5v.png)
Where
![(x_1,y_1) = (0,0)](https://img.qammunity.org/2022/formulas/mathematics/college/jjpe9ut1fyai19fxlxr2wuy7itk96mud3s.png)
![(x_2,y_2) = (5,25)](https://img.qammunity.org/2022/formulas/mathematics/college/cmigxt0vcjecmqrflm6wddq5lh0tsv2vvw.png)
So, the slope is:
![m = (25 - 0)/(5 - 0)](https://img.qammunity.org/2022/formulas/mathematics/college/g52kypr7b2231upksr87r21euuvuv6axap.png)
![m = (25)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/6kyae7ellxq1vkxrvt7383tysfl59odb83.png)
![m = 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/f3twlo5ekkiukjiajmw16s3jvkz4dypmwi.png)
The equation is then calculated as:
![y = m(x - x_1) + y_1](https://img.qammunity.org/2022/formulas/mathematics/college/q3fz2j2j3y666k3ykrf0me9rxopd59ekuj.png)
Where:
and
![(x_1,y_1) = (0,0)](https://img.qammunity.org/2022/formulas/mathematics/college/jjpe9ut1fyai19fxlxr2wuy7itk96mud3s.png)
![y = 5(x - 0) + 0](https://img.qammunity.org/2022/formulas/mathematics/college/b3z822k35u3un7tfdbslxjpq7jinlz5225.png)
![y = 5(x) + 0](https://img.qammunity.org/2022/formulas/mathematics/college/fxr21r0a8z85pcsczkzqehwb50v5jc34ks.png)
![y = 5x](https://img.qammunity.org/2022/formulas/mathematics/college/jnecdjj6owesr28jt79u5sk6xev63dva3p.png)
So, the function of the first line is:
![f(x) = 5x;\ 0 < x \le 5](https://img.qammunity.org/2022/formulas/mathematics/college/dw2pydjn1eamps8jq097m2328r9doon1tm.png)
For the second line
Calculate the slope of the second line
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/i1pa2mybgkt3dkd7j6tklhm5t9tvmo4g5v.png)
Where
![(x_1,y_1) = (5,20)](https://img.qammunity.org/2022/formulas/mathematics/college/uneruy5smsypgzk7u85wpxw5fltio1snde.png)
![(x_2,y_2) = (9,40)](https://img.qammunity.org/2022/formulas/mathematics/college/xj3tb43v4g1w1v0uazm2w2o5sgyokp1379.png)
So, the slope is:
![m = (40 - 20)/(9 - 5)](https://img.qammunity.org/2022/formulas/mathematics/college/qui3jr4jhx6neugo5jbsaidhismlu5iy3p.png)
![m = (20)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/rzhj4kba6dwhcfwde02kq8zgzkn6fzj6xu.png)
![m = 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/f3twlo5ekkiukjiajmw16s3jvkz4dypmwi.png)
The equation is then calculated as:
![y = m(x - x_1) + y_1](https://img.qammunity.org/2022/formulas/mathematics/college/q3fz2j2j3y666k3ykrf0me9rxopd59ekuj.png)
Where:
and
![(x_1,y_1) = (5,20)](https://img.qammunity.org/2022/formulas/mathematics/college/uneruy5smsypgzk7u85wpxw5fltio1snde.png)
![y = 5(x - 5) + 20](https://img.qammunity.org/2022/formulas/mathematics/college/y4tv6az4z3jwmx4qczibwq27sxboya4ozn.png)
![y = 5x - 25 + 20](https://img.qammunity.org/2022/formulas/mathematics/college/xn6vzps8n2acyikbrg9fz5rkr31i3k2e0s.png)
![y = 5x -5](https://img.qammunity.org/2022/formulas/mathematics/college/n9hd4y2nfz6iyndrm95jxoz67o33z0kdey.png)
So, the function of the second line is:
![f(x) = 5x -5;\ x>5](https://img.qammunity.org/2022/formulas/mathematics/college/rltp22rmvnd9v3sge41rpqw1n10cqjjmzq.png)
Hence, the piece-wise function is:
![f(x) = \left \{ {{5x;\ 0<x\le 5} \atop {5x-5; x > 5}} \right.](https://img.qammunity.org/2022/formulas/mathematics/college/2oxfw72nyj64fs0pkals2yddhfh6mxgtf4.png)
Solving (b): The rate at which customers that buy up to 5lb buy.
![x = 5](https://img.qammunity.org/2022/formulas/mathematics/college/zl3xsuljtiu8wy0fz8ilueakk81qu6lhda.png)
This question implies that, we determine the rate at which this customer buys.
For
![x = 5](https://img.qammunity.org/2022/formulas/mathematics/college/zl3xsuljtiu8wy0fz8ilueakk81qu6lhda.png)
![f(x) = 5x;\ 0 < x \le 5](https://img.qammunity.org/2022/formulas/mathematics/college/dw2pydjn1eamps8jq097m2328r9doon1tm.png)
The slope of the above function is 5.
So, this customer buys at the rate of $5 per lb
Solving (b): The rate at which customers that buy more than 5lb buy the extra pounds above 5lb.
For
![x > 5](https://img.qammunity.org/2022/formulas/mathematics/college/oc1t0gcb526jkxayp7eh7oooli1arw01vn.png)
![f(x) = 5x -5;\ x>5](https://img.qammunity.org/2022/formulas/mathematics/college/rltp22rmvnd9v3sge41rpqw1n10cqjjmzq.png)
Assume x = 6
![f(6) = 5 * 6 - 5](https://img.qammunity.org/2022/formulas/mathematics/college/y8eoj7h1p3vc778g4z5s9jlaqft7rdi2ug.png)
![f(6) = 30 - 5](https://img.qammunity.org/2022/formulas/mathematics/college/5qtnthxzcixoy8wzpiggil2cc1fqw50v48.png)
![f(6) = 25](https://img.qammunity.org/2022/formulas/mathematics/college/u3zu2on8ueyfuohevv7acv213z25saw2sw.png)
Express as 20 + 5
![f(6) = 20 + 5 * 1](https://img.qammunity.org/2022/formulas/mathematics/college/wofv2irg93z773wwk17q2onlqsgiw2ug48.png)
Assume x = 7
![f(7) = 5 * 7 - 5](https://img.qammunity.org/2022/formulas/mathematics/college/du2w67t4rgbx4b4x35ruo8qwla0sfki730.png)
![f(7) = 35 - 5](https://img.qammunity.org/2022/formulas/mathematics/college/f374qnzj7b0pswcqtpfrvbzbwq5wnvi985.png)
![f(7) = 30](https://img.qammunity.org/2022/formulas/mathematics/college/lx3vvcsa89509n7qoax3r0i5msiaocqhtn.png)
![f(7) = 20 + 10](https://img.qammunity.org/2022/formulas/mathematics/college/u21r1syv6zwe2qx5s5jqh2q9lueojuxe9f.png)
Express 10 as 5 * 2
![f(7) = 20 + 5 * 2](https://img.qammunity.org/2022/formulas/mathematics/college/emcjo9dkd3swbr9l7c3gf1zndphblh0gfp.png)
So, we have:
![f(6) = 20 + 5 * 1](https://img.qammunity.org/2022/formulas/mathematics/college/wofv2irg93z773wwk17q2onlqsgiw2ug48.png)
![f(7) = 20 + 5 * 2](https://img.qammunity.org/2022/formulas/mathematics/college/emcjo9dkd3swbr9l7c3gf1zndphblh0gfp.png)
This can be generalized as:
![f(x) = 20 + 5(x - 5)](https://img.qammunity.org/2022/formulas/mathematics/college/an8c9m5d2yro23vzzwjmgsghqm2plg66xn.png)
For the above functions;
20 represents the amount they buy the first 5
5 represents the rate at which they buy extra pounds above 5
Hence, they buy the extra pounds at the rate of $5 per pound