Answer:
0.8 minutes
Explanation:
From the given information:
The arrival time for the jobs to the computer obeys a Poisson distribution;
Thus, the arrival rate is:
![\lambda = 0.6 \ jobs \ per \ minute](https://img.qammunity.org/2022/formulas/mathematics/college/ddt7sbfuevjtk3ppu7155pu4p78brpil12.png)
Assuming the average time spent on the jobs in the system is denoted by:
![W_s= 5 \ minutes](https://img.qammunity.org/2022/formulas/mathematics/college/6034ww9imhhncg63tpbl3ot4x8uudm69fg.png)
The average time a job process in the system can be expressed as follows:
![W_s = (1)/(\mu - \lambda)](https://img.qammunity.org/2022/formulas/mathematics/college/7y6bgt3hucgmn94u5iwkgdkyfaqi8dc6f7.png)
From above formula:
service rate
arrival rate
replacing the values;
![5 = (1)/(\mu - 0.6)](https://img.qammunity.org/2022/formulas/mathematics/college/b4cr3whcdzskcx9cxl2rj54ru7wgdzrvm9.png)
![5(\mu - 0.6) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/6nr3nffh4brb1as9ls69vuagd2y8rqlas4.png)
Open brackets
![5 \mu - 3 = 1](https://img.qammunity.org/2022/formulas/mathematics/college/mr8k5cjh054ii67vblu0wofgj9fv5x0u98.png)
![5 \mu = 3+ 1 \\ \\ \mu = (4)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/1ljjykutt1tlq1wu72i7g77p33efun8114.png)
0.8 minutes