160k views
2 votes
Solve the following question

Solve the following question-example-1
User Stals
by
4.0k points

1 Answer

5 votes

Answer:

g)
u^(4)\cdot v^(-1)\cdot z^(3), h)
((x+4)\cdot (x+2))/(3\cdot (x-5))

Explanation:

We proceed to solve each equation by algebraic means:

g)
(u^(5)\cdot v)/(z)/ (u\cdot v^(2))/(z^(4))

1)
(u^(5)\cdot v)/(z)/ (u\cdot v^(2))/(z^(4)) Given

2)
((u^(5)\cdot v)/(z) )/((u\cdot v^(2))/(z^(4)) ) Definition of division

3)
(u^(5)\cdot v\cdot z^(4))/(u\cdot v^(2)\cdot z)
((a)/(b) )/((c)/(d) ) = (a\cdot d)/(b\cdot c)

4)
\left((u^(5))/(u) \right)\cdot \left((v)/(v^(2)) \right)\cdot \left((z^(4))/(z) \right) Associative property

5)
u^(4)\cdot v^(-1)\cdot z^(3)
(a^(m))/(a^(n)) = a^(m-n)/Result

h)
(x^(2)-16)/(x^(2)-10\cdot x + 25) / (3\cdot x - 12)/(x^(2)-3\cdot x -10)

1)
(x^(2)-16)/(x^(2)-10\cdot x + 25) / (3\cdot x - 12)/(x^(2)-3\cdot x -10) Given

2)
((x^(2)-16)/(x^(2)-10\cdot x+25) )/((3\cdot x - 12)/(x^(2)-3\cdot x - 10) ) Definition of division

3)
((x^(2)-16)\cdot (x^(2)-3\cdot x -10))/((x^(2)-10\cdot x + 25)\cdot (3\cdot x - 12))
((a)/(b) )/((c)/(d) ) = (a\cdot d)/(b\cdot c)

4)
((x+4)\cdot (x-4)\cdot (x-5)\cdot (x+2))/(3\cdot (x-5)^(2)\cdot (x-4) ) Factorization/Distributive property

5)
\left((1)/(3) \right)\cdot (x+4)\cdot (x+2)\cdot \left((x-4)/(x-4) \right)\cdot \left[(x-5)/((x-5)^(2)) \right] Modulative and commutative properties/Associative property

6)
((x+4)\cdot (x+2))/(3\cdot (x-5))
(a^(m))/(a^(n)) = a^(m-n)/
(a)/(b)* (c)/(d) = (a\cdot c)/(b\cdot d)/Definition of division/Result

User Adam Kinney
by
3.7k points