Answer:
![\displaystyle \lim_(x\to \infty)(3x^2+4.5)/(x^2-1.5)=3](https://img.qammunity.org/2022/formulas/mathematics/college/uz87k3f9ihspl6rcdy9i7sei0d3z81gqh3.png)
Explanation:
We want to evaluate the limit:
![\displaystyle \lim_(x\to \infty)(3x^2+4.5)/(x^2-1.5)](https://img.qammunity.org/2022/formulas/mathematics/college/pp0x40ft91gs5r2jfguzrwowoxarfaot41.png)
To do so, we can divide everything by x². So:
![=\displaystyle \lim_(x\to \infty)(3+4.5/x^2)/(1-1.5/x^2)](https://img.qammunity.org/2022/formulas/mathematics/college/1uhn0hndtpaecobyfv2egda3zwu7oiewl8.png)
Now, we can apply direct substitution:
![\Rightarrow \displaystyle (3+4.5/(\infty)^2)/(1-1.5/(\infty)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/tavifktmb0ifh3gwxg48nz211n8hc5s4vn.png)
Any constant value over infinity tends towards 0. Therefore:
![\displaystyle =(3+0)/(1+0)=(3)/(1)=3](https://img.qammunity.org/2022/formulas/mathematics/college/yb6nah9d8tdok9o23dsrtt83bxh6kass6u.png)
Hence:
![\displaystyle \lim_(x\to \infty)(3x^2+4.5)/(x^2-1.5)=3](https://img.qammunity.org/2022/formulas/mathematics/college/uz87k3f9ihspl6rcdy9i7sei0d3z81gqh3.png)
Alternatively, we can simply consider the biggest term of the numerator and the denominator. The term with the strongest influence in the numerator is 3x², and in the denominator it is x². So:
![\displaystyle \Rightarrow \lim_(x\to\infty)(3x^2)/(x^2)](https://img.qammunity.org/2022/formulas/mathematics/college/2swxi9nsf47synteauxgjyaxj5ufmvp774.png)
Simplify:
![\displaystyle =\lim_(x\to\infty)3=3](https://img.qammunity.org/2022/formulas/mathematics/college/svc2o87fyu7w5xzl5hrrtvft2wlh5cf4w3.png)
The limit of a constant is simply the constant.
We acquire the same answer.