Answer:
25.2 ml
Step-by-step explanation:
When the aluminium block is inserted in the container, the overall amount of only the water in the beaker can equal V o.
The weight of the water expelled by the plastic container should be equal to the weight of the aluminium block, according to the buoyancy balance relation.
i.e.
![\rho_w V_wg = m_(Al)g = \rho_(Al)V_(Al) g \\ \\ V_w = (\rho_(Al)V_(AL))/(\rho_(w))](https://img.qammunity.org/2022/formulas/physics/college/2ula3zs9x5tzdarwnac1moii4zkasl8s8s.png)
When the aluminium block is inserted into the plastic container, the initial volume of water = 60 ml
![V_i = V_o + V_w](https://img.qammunity.org/2022/formulas/physics/college/y5hz16bxz26zll7ta7k1r61vg6poeo97ql.png)
![V_i = V_o + (\rho_(Al)V_(Al))/(\rho_(w))---(1)](https://img.qammunity.org/2022/formulas/physics/college/xuukzgb4hthpivw16fn2h3gdgdw1u6et7g.png)
When the aluminium block is placed outside the container, the volume of the water
![V_f = V_o +V_(Al) ---(2)](https://img.qammunity.org/2022/formulas/physics/college/j4nr3us3j8scgltflnd7cbwbsfzumesh8f.png)
By subtracting equation (1) and (2)
![V_i -V_f = V_o + (\rho_(Al) V_(Al))/(\rho_w)- ( V_o + V_(Al)}) \\ \\ =(\rho _(Al)V_(Al))/(\rho_w)-V_(Al) \\ \\ = V_(Al) \Big( (\rho_(Al))/(\rho_(w))-1 \Big)](https://img.qammunity.org/2022/formulas/physics/college/rg5vv99va4gfxbug8ajbcge7vg6ad0pfin.png)
since;
![m_(Al) = 40 g](https://img.qammunity.org/2022/formulas/physics/college/un15dyi5cgt4g79zzikwh6s5qsk1s4pyaj.png)
![V _(Al) = (40 \ g)/(2.7 \ g/cm^3) \\ \\ V_(Al) = 14.815 \ cm^3](https://img.qammunity.org/2022/formulas/physics/college/ys2g8aqwslaleg9yq52vd40msozjxi1uxi.png)
Similarly;
![(\rho_(Al))/(\rho_(w))= (2.7 )/(1.0)](https://img.qammunity.org/2022/formulas/physics/college/pz0mag3c3odadoisfjcknylxn2ez7phw6s.png)
= 2.7
![V_i -V_f =14.815\Big( 2.7-1 \Big) \\ \\ V_i -V_f = 25.1855 \ ml \\ \\ = \mathbf{25.2 \ ml}](https://img.qammunity.org/2022/formulas/physics/college/s3p8vqcihp5g3wcyoqz0b9234jh6sshq6l.png)