214k views
0 votes
Verify the following identity and show steps

(Cos2 θ)/(1+sin2 θ)= (cot θ-1)/(cot θ+1)

1 Answer

2 votes

Answer:

Verified below

Explanation:

We want to show that (Cos2θ)/(1 + sin2θ) = (cot θ - 1)/(cot θ + 1)

In trigonometric identities;

Cot θ = cos θ/sin θ

Thus;

(cot θ - 1)/(cot θ + 1) gives;

((cos θ/sin θ) - 1)/((cos θ/sin θ) + 1)

Simplifying numerator and denominator gives;

((cos θ - sin θ)/sin θ)/((cos θ + sin θ)/sin θ)

This reduces to;

>> (cos θ - sin θ)/(cos θ + sin θ)

Multiply top and bottom by ((cos θ + sin θ) to get;

>> (cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ)

In trigonometric identities, we know that;

cos 2θ = (cos² θ - sin²θ)

cos²θ + sin²θ = 1

sin 2θ = 2sinθcosθ

Thus;

(cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ) gives us:

>> cos 2θ/(1 + sin 2θ)

This is equal to the left hand side.

Thus, it is verified.

User Maulik Shah
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.