Given:
A function g has the factors (x - 7) and (x + 6).
To find:
The zeros of the function g.
Solution:
We know that if (x-a) is a factor of a function then x=a is a zero of that function because
![x-a=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/z4uafy015kbfq0nh90ag6lprqf34q3grta.png)
![x=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/zkonb08hubqwqhnpe8ds8f09edtkoonkuh.png)
It is given that the function g has the factors (x - 7) and (x + 6).
![x-7=0](https://img.qammunity.org/2022/formulas/mathematics/college/bzbep7vdqkeocpdrn5fu5cq1c8nzhdi0wn.png)
![x=7](https://img.qammunity.org/2022/formulas/mathematics/college/arpqhm2rcmx20zb2ql3h3z8i59crr3l6do.png)
Similarly,
![x+6=0](https://img.qammunity.org/2022/formulas/mathematics/college/ibkzatw0g69elanfsadbejmrrobf8hj3ei.png)
![x=-6](https://img.qammunity.org/2022/formulas/mathematics/high-school/vuo92fvebqlugf60q1axg5nm9in1kmfgkp.png)
Therefore, -6 and 7 are two zeros of the function g.
Hence the correct option is B.