let's recall that in a Kite the diagonals meet each other at 90° angles, Check the picture below, so we're looking for the equation of a line that's perpendicular to BD and that passes through (-1 , 3).
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of BD


so we're really looking for the equation of a line whose slope is -1/3 and passes through point A
![(\stackrel{x_1}{-1}~,~\stackrel{y_1}{3})\qquad \qquad \stackrel{slope}{m}\implies -\cfrac{1}{3} \\\\\\ \begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-\cfrac{1}{3}}[x-\stackrel{x_1}{(-1)}]\implies y-3=-\cfrac{1}{3}(x+1) \\\\\\ y-3=-\cfrac{1}{3}x-\cfrac{1}{3}\implies y=-\cfrac{1}{3}x-\cfrac{1}{3}+3\implies y=-\cfrac{1}{3}x+\cfrac{8}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/8938dvhm5rwtdfn9v22jha1ku11m2rw7n9.png)