37.8k views
5 votes
Nevaeh invested $660 in an account paying an interest rate of 3% compounded

continuously. Jonathan invested $660 in an account paying an interest rate of 3 %
compounded monthly. After 14 years, how much more money would Nevaeh have in
her account than Jonathan, to the nearest dollar?

1 Answer

4 votes

Answer:

19

Explanation:

Rate 1: 3

4

1

%=3+1/4=

\,\,3.25\%\rightarrow 0.0325

3.25%→0.0325

\text{Rate 2: }3\tfrac{1}{8}\%=3+1/8=

Rate 2: 3

8

1

%=3+1/8=

\,\,3.125\%\rightarrow 0.03125

3.125%→0.03125

\text{Calculate Final Amount for Nevaeh}

Calculate Final Amount for Nevaeh

\overline{\phantom{\text{Calculate Final Amount for Nevaeh}}}

Calculate Final Amount for Nevaeh

\text{Compounded Continuously:}

Compounded Continuously:

A=Pe^{rt}

A=Pe

rt

P=660\hspace{35px}r=0.0325\hspace{35px}t=14

P=660r=0.0325t=14

Given values

A=660e^{0.0325(14)}

A=660e

0.0325(14)

Plug in

A=660e^{0.455}

A=660e

0.455

Multiply

A=1040.2744

A=1040.2744

Use calculator (with e button)

\text{Calculate Final Amount for Jonathan}

Calculate Final Amount for Jonathan

\overline{\phantom{\text{Calculate Final Amount for Jonathan}}}

Calculate Final Amount for Jonathan

\text{Compounded Monthly:}

Compounded Monthly:

A=P\left(1+\frac{r}{n}\right)^{nt}

A=P(1+

n

r

)

nt

Compound interest formula

P=660\hspace{35px}r=0.03125\hspace{35px}t=14\hspace{35px}n=12

P=660r=0.03125t=14n=12

Given values

A=660\left(1+\frac{0.03125}{12}\right)^{12(14)}

A=660(1+

12

0.03125

)

12(14)

Plug in values

A=660(1.0026042)^{168}

A=660(1.0026042)

168

Simplify

A=1021.6468

A=1021.6468

Use calculator

\text{How much more money Nevaeh has:}

How much more money Nevaeh has:

1040.2744-1021.6468

1040.2744−1021.6468

18.6276

18.6276

\$ 19

$19

User Roundcrisis
by
5.4k points