Answer:
![\textsf{D.}\quad5x^2+8x-12=2x^2-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/a1tas3n6ozl92v6vqnm2000coyhusjcp3z.png)
Explanation:
Quadratic Formula
![x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when}\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/y55l7v1y4waybbqvew3ea4eoity9iv8y2l.png)
A linear equation in the form
cannot be solved using the quadratic formula, as it is not a quadratic equation.
![\textsf{A.}\quad 4x + 2 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/2xybn09alqb9xrlsjn83vdavpm9niup1if.png)
This is a linear equation and therefore cannot be solved using the quadratic formula.
![\begin{aligned}\textsf{B.}\quad 3x^2-4&=3x^2-4x\\\implies -4&=-4x\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c0brn223b9xl4q3n7pti2hq454low38yua.png)
This is a linear equation and therefore cannot be solved using the quadratic formula.
![\textsf{C.}\quad 2x=32](https://img.qammunity.org/2023/formulas/mathematics/high-school/e55mwew2t618w7oepe65qie6xbsnecqcuf.png)
This is a linear equation and therefore cannot be solved using the quadratic formula.
![\textsf{D.}\quad5x^2+8x-12=2x^2-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/a1tas3n6ozl92v6vqnm2000coyhusjcp3z.png)
![\implies 3x^2+9x-12=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/pwh65iqqqsdqge5uy5zv7lvk7wy9uc9xmi.png)
Therefore, this is a quadratic equation in the form
and therefore can be solved quadratic formula.
a = 3, b = 9 and c = -12
Inputting these into the quadratic formula and solving for x:
![\begin{aligned}\implies x &=(-(9) \pm √((9)^2-4(3)(-12)))/(2(3))\\\\x& = (-9 \pm √(225))/(6)\\\\x& = (-9 \pm 15)/(6)\\\\x&=(6)/(6),(-24)/(6)\\\\x&=1, -4\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7mfpsw7fx717wehgefwlbl8rvd6it0cmdz.png)