Answer:
The table is a quadratic function
Explanation:
Given
The attached table
Required
Tell if it is a quadratic function
The difference in the x values are uniform (i.e. difference of 1), so the following method can be applied.
(1) Subtract adjacent y values.
![d_1=2 - 16 = -14](https://img.qammunity.org/2022/formulas/mathematics/college/p1e3xrejc7gsrl4syp78t0fku3cp3yaocs.png)
![d_2=-2 - 2 = -4](https://img.qammunity.org/2022/formulas/mathematics/college/g4hpuevaqvcglycwcgxprq9ckwv70c2b7o.png)
![d_3 = 4--2 = 6](https://img.qammunity.org/2022/formulas/mathematics/college/w3ehppodjbuqyoztqhgx2kicsril3n4s7a.png)
![d_4 = 20 - 4 = 16](https://img.qammunity.org/2022/formulas/mathematics/college/jyuib9iunzlmdnizk6l8o9326v5espe4b4.png)
(2) Subtract adjacent differences in (1) above
![d_5 = d_2 - d_1 = -4 --14 = 10](https://img.qammunity.org/2022/formulas/mathematics/college/ez1c6lxagwqstsrj8pwps9eejslb1kihgb.png)
![d_6 = d_3 - d_2 = 6 --4 = 10](https://img.qammunity.org/2022/formulas/mathematics/college/lm8vswd94jhyci9nfutap22kstr5hv4y0t.png)
![d_7 = d_4 - d_3 = 16 -6 = 10](https://img.qammunity.org/2022/formulas/mathematics/college/4ugukygnkq9o1pwqo4kcx5kzlh97f0jr4i.png)
Notice the calculated differences in (2) are the same.
Hence, the table is a quadratic function