109k views
1 vote
Find the 16th term of the geometric sequence 4, -16, 64, ...

User Kurl
by
5.7k points

1 Answer

2 votes

Answer:


\bold{a_(16) =-4^(16)=-2^(32)=-4\,294\,967\,296}

Explanation:


a_1=4\\a_2=-16\\a_3=64\\\\(a_2)/(a_1)=(-16)/(4)=-4\\\\ (a_3)/(a_2)=(64)/(-16)=-4\\\\\\(a_2)/(a_1)=(a_3)/(a_2)=-4=r

The formula:


a_n=a_1\cdot q^(n-1)

Therefore:


a_(16) =4\cdot(-4)^(16-1)=4\cdot(-4)^(15)=-4^(16)=-2^(32)=-4\,294\,967\,296

User Muddassir
by
4.8k points