120k views
1 vote
Nonsense will be reported!!​

Nonsense will be reported!!​-example-1
User Grantly
by
4.3k points

1 Answer

2 votes


\qquad \qquad\huge \underline{\boxed{\sf Answer}}

For the first figure ~

The diagonals of a kite intersect each other at 90°

So, we can apply Pythagoras theorem here :


\qquad \sf  \dashrightarrow \: CD² = OC² + OD²


\qquad \sf  \dashrightarrow \: CD² = {7}^(2) + {9}^(2)


\qquad \sf  \dashrightarrow \: CD² = 49 + 81


\qquad \sf  \dashrightarrow \: CD² = 130


\qquad \sf  \dashrightarrow \: CD=x = √( 130)

For the second figure ;

we have same concept of kite, and use of Pythagoras theorem !

Also, the diagonal QS bisects diagonal PR

Hence,


\qquad \sf  \dashrightarrow \: PR = 2 * OR


\qquad \sf  \dashrightarrow \: 10 = 2 * OR


\qquad \sf  \dashrightarrow \: OR = 10 / 2


\qquad \sf  \dashrightarrow \: OR = 5 \: mm

now, apply pythagoras theorem ~


\qquad \sf  \dashrightarrow \: QR² = OR² + OQ²


\qquad \sf  \dashrightarrow \: QR² = {5}^(2) + {6}^(2)


\qquad \sf  \dashrightarrow \: QR² = 25 + 36


\qquad \sf  \dashrightarrow \: QR² = 61


\qquad \sf  \dashrightarrow \: QR=x = √(61) \: mm

here, 2 OR = 2 OP = PR

so, similarly OP = 5 mm

Applying pythagoras theorem again ;


\qquad \sf  \dashrightarrow \: SP² = OS² + OP²


\qquad \sf  \dashrightarrow \: SP² = {10}^(2) + {5}^(2)


\qquad \sf  \dashrightarrow \: SP² = {100}^{} + 25


\qquad \sf  \dashrightarrow \: SP² = 125


\qquad \sf  \dashrightarrow \: SP = √(125)


\qquad \sf  \dashrightarrow \: SP = y = 5√(5) \: mm

User Skmvasu
by
3.9k points