120k views
1 vote
Nonsense will be reported!!​

Nonsense will be reported!!​-example-1
User Grantly
by
8.1k points

1 Answer

2 votes


\qquad \qquad\huge \underline{\boxed{\sf Answer}}

For the first figure ~

The diagonals of a kite intersect each other at 90°

So, we can apply Pythagoras theorem here :


\qquad \sf  \dashrightarrow \: CD² = OC² + OD²


\qquad \sf  \dashrightarrow \: CD² = {7}^(2) + {9}^(2)


\qquad \sf  \dashrightarrow \: CD² = 49 + 81


\qquad \sf  \dashrightarrow \: CD² = 130


\qquad \sf  \dashrightarrow \: CD=x = √( 130)

For the second figure ;

we have same concept of kite, and use of Pythagoras theorem !

Also, the diagonal QS bisects diagonal PR

Hence,


\qquad \sf  \dashrightarrow \: PR = 2 * OR


\qquad \sf  \dashrightarrow \: 10 = 2 * OR


\qquad \sf  \dashrightarrow \: OR = 10 / 2


\qquad \sf  \dashrightarrow \: OR = 5 \: mm

now, apply pythagoras theorem ~


\qquad \sf  \dashrightarrow \: QR² = OR² + OQ²


\qquad \sf  \dashrightarrow \: QR² = {5}^(2) + {6}^(2)


\qquad \sf  \dashrightarrow \: QR² = 25 + 36


\qquad \sf  \dashrightarrow \: QR² = 61


\qquad \sf  \dashrightarrow \: QR=x = √(61) \: mm

here, 2 OR = 2 OP = PR

so, similarly OP = 5 mm

Applying pythagoras theorem again ;


\qquad \sf  \dashrightarrow \: SP² = OS² + OP²


\qquad \sf  \dashrightarrow \: SP² = {10}^(2) + {5}^(2)


\qquad \sf  \dashrightarrow \: SP² = {100}^{} + 25


\qquad \sf  \dashrightarrow \: SP² = 125


\qquad \sf  \dashrightarrow \: SP = √(125)


\qquad \sf  \dashrightarrow \: SP = y = 5√(5) \: mm

User Skmvasu
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories