Given:
The value is
.
To find:
The values from the given options which are equal to the given value.
Solution:
We have,
![(√(2))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q5hlbw6gh9a7cdn6gfxokswkxptkw4ad0m.png)
It can be written as:
![(√(2))/(2)=(1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/j9nn4z9zfzanojbjwnmogt6q5ofqcqbzl0.png)
From the standard trigonometric table, we get
![\sin 30^\circ=(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/153zzogb5iz4pedv81exemwxfwmmerf40f.png)
![\sin 45^\circ=(1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/aqefmdi4glq2me260bdtomvf2pdu7g5h4s.png)
![\cos 45^\circ=(1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/1xnu63zdb4w8ou0d05zm3k6smro8hf0r8n.png)
![\cos 60^\circ=(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g5dqb8ng2krz6c29kds6g4p0dg7dx91x3a.png)
![\tan 30^\circ=(1)/(√(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/xy7b8bkyugzkeob2bjachich5llobzp576.png)
![\tan 45^\circ=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/o589twgq4uypw1f81ah2yqq0abuqr9mhfc.png)
From the above values it is clear that the value of
and
are equal to
.
Therefore,
and
and equal to
. So, options B and C are correct.