Given:
The values of a linear function are
and
.
To find:
The linear function.
Solution:
If a linear function passes through two points, then the equation of the linear function is:
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wkwv82bw6qlga765myohf3n6p3g9tbbqs4.png)
The values of a linear function are
and
. It means the function passes through the points (-9,8) and (0,1). So, the equation of the linear function is:
![y-8=(1-8)/(0-(-9))(x-(-9))](https://img.qammunity.org/2022/formulas/mathematics/high-school/30quct3saffxxkbxtuqh6l0ti3gfs4vf2l.png)
![y-8=(-7)/(9)(x+9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6qq03z0v2ty944o28vyklo5fvw1y1m9zwh.png)
![y-8=(-7)/(9)(x)+(-7)/(9)(9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n9wf0evo2ndgr5vemoj5e7oqkq5vwqo5jp.png)
![y-8=(-7)/(9)x-7](https://img.qammunity.org/2022/formulas/mathematics/high-school/x2tl40dctapc6vu8x84jfbkz2dmgzutt1i.png)
Adding 8 on both sides, we get
![y-8+8=(-7)/(9)x-7+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/8t2ziayaf83dckzxklpnopkt84y4yo0nla.png)
![y=(-7)/(9)x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/53o60m6lb7s6ca26bj3madqxbhfj95q21a.png)
Putting
, we get
![F(x)=(-7)/(9)x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/p9q1orj0binmbhshkj9xg6cmnmgt50ax84.png)
Therefore, the required linear function is
.