145k views
21 votes
What is 5.316 - 1.942 (show ur work)

1 Answer

10 votes

Answer:

3.374

Explanation:


\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}


\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}


\begin{matrix}\:\:&5&.&3&1&6\\ -&1&.&9&4&2\end{matrix}


\mathrm{Subtract\:each\:column\:of\:digits,\:starting\:from\:the\:right\:and\:working\:left}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:6-2=4


\frac{\begin{matrix}\:\:&5&.&3&1&\textbf{6}\\ -&1&.&9&4&\textbf{2}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\textbf{4}\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}


\frac{\begin{matrix}\:\:&5&.&3&\textbf{1}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}


\mathrm{The\:bottom\:number\:is\:larger\:than\:the\:upper\:number.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}


\mathrm{The\:top\:digit\:is\:not\:bigger\:than\:the\:bottom\:one.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}


\frac{\begin{matrix}\:\:&5&.&\textbf{3}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Borrow\:}1\mathrm{\:from\:}5\mathrm{.\:\:The\:remainder\:is\:}4


\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&10&\:\:&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&3&1&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{\:\:}&\:\:&\:\:&\:\:&4\end{matrix}}


\mathrm{Add\:}1\mathrm{\:ten\:to\:}3:\quad \:10+3=13


\frac{\begin{matrix}\:\:&4&\:\:&\textbf{13}&\:\:&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{3}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Borrow\:}1\mathrm{\:from\:}13\mathrm{.\:\:The\:remainder\:is\:}12


\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&10&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Add\:}1\mathrm{\:ten\:to\:}1:\quad \:10+1=11


\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:11-4=7


\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{7}&4\end{matrix}}


\mathrm{Place\:the\:decimal\:point\:in\:the\:answer\:directly\:below\:the\:decimal\:points\:in\:the\:terms}


\frac{\begin{matrix}\:\:&4&\textbf{\:\:}&12&11&\:\:\\ \:\:&\linethrough{5}&\textbf{.}&\linethrough{13}&\linethrough{1}&6\\ -&1&\textbf{.}&9&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\textbf{.}&3&7&4\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:4-1=3


\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&12&11&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&\linethrough{13}&\linethrough{1}&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{3}&.&3&7&4\end{matrix}}


=3.374

Hence the correct answer is 3.374

User Cbutler
by
8.7k points

Related questions

asked May 3, 2023 99.7k views
Sverre Rabbelier asked May 3, 2023
by Sverre Rabbelier
7.9k points
1 answer
20 votes
99.7k views
asked Nov 9, 2023 224k views
Fronzee asked Nov 9, 2023
by Fronzee
6.8k points
1 answer
5 votes
224k views
asked Sep 4, 2023 208k views
Stvsmth asked Sep 4, 2023
by Stvsmth
7.5k points
1 answer
25 votes
208k views