145k views
21 votes
What is 5.316 - 1.942 (show ur work)

1 Answer

10 votes

Answer:

3.374

Explanation:


\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}


\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}


\begin{matrix}\:\:&5&.&3&1&6\\ -&1&.&9&4&2\end{matrix}


\mathrm{Subtract\:each\:column\:of\:digits,\:starting\:from\:the\:right\:and\:working\:left}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:6-2=4


\frac{\begin{matrix}\:\:&5&.&3&1&\textbf{6}\\ -&1&.&9&4&\textbf{2}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\textbf{4}\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}


\frac{\begin{matrix}\:\:&5&.&3&\textbf{1}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}


\mathrm{The\:bottom\:number\:is\:larger\:than\:the\:upper\:number.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}


\mathrm{The\:top\:digit\:is\:not\:bigger\:than\:the\:bottom\:one.\:\:Try\:to\:'borrow'\:a\:digit\:from\:the\:left.}


\frac{\begin{matrix}\:\:&5&.&\textbf{3}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Borrow\:}1\mathrm{\:from\:}5\mathrm{.\:\:The\:remainder\:is\:}4


\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&10&\:\:&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&3&1&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{\:\:}&\:\:&\:\:&\:\:&4\end{matrix}}


\mathrm{Add\:}1\mathrm{\:ten\:to\:}3:\quad \:10+3=13


\frac{\begin{matrix}\:\:&4&\:\:&\textbf{13}&\:\:&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{3}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Borrow\:}1\mathrm{\:from\:}13\mathrm{.\:\:The\:remainder\:is\:}12


\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&10&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}


\mathrm{Add\:}1\mathrm{\:ten\:to\:}1:\quad \:10+1=11


\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:11-4=7


\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{7}&4\end{matrix}}


\mathrm{Place\:the\:decimal\:point\:in\:the\:answer\:directly\:below\:the\:decimal\:points\:in\:the\:terms}


\frac{\begin{matrix}\:\:&4&\textbf{\:\:}&12&11&\:\:\\ \:\:&\linethrough{5}&\textbf{.}&\linethrough{13}&\linethrough{1}&6\\ -&1&\textbf{.}&9&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\textbf{.}&3&7&4\end{matrix}}


\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:4-1=3


\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&12&11&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&\linethrough{13}&\linethrough{1}&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{3}&.&3&7&4\end{matrix}}


=3.374

Hence the correct answer is 3.374

User Cbutler
by
4.7k points