203k views
6 votes
NEED ANSWER IN Q ASAP- 50 POINTS

NEED ANSWER IN Q ASAP- 50 POINTS-example-1

1 Answer

4 votes

Answer:


\sf c = -4 and
\sf b = -6

Step-by-step explanation:

using the formula:
\sf x = ( -b \pm √(b^2 - 4ac))/(2a)

Here the a = 1

using the equation:


3 \pm√(13)= ( -b \pm √(b^2 - 4(1)c))/(2(1))


6 \pm2√(13)= -b \pm √(b^2 - 4(1)c)}

matching the coefficients: b = - 6

find c:


6 \pm2√(13)= -(-6) \pm √((-6)^2 - 4(1)c)}


6 \pm2√(13)= 6 \pm √(36 - 4c)}


\sf 6 \pm√(52)= 6 \pm √(36 - 4c)}


\sf 36-4c = 52


\sf -4c = 52-36


\sf -4x = 16


\sf c = -4

User Jon Ekiz
by
4.4k points